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Abstract

The 25Al(p, γ)26Si reaction rate is one of the few outstanding uncertainties in

modelling the contribution from novae to the galactic budget of the long-lived

radioactive isotope 26Al. The rate is dominated by three key resonances in
26Si (Jπ = 1+, 0+ and 3+), of which only the 3+ resonance has been directly

constrained. The first experiment described in this thesis used the 25Mg(d, p)

reaction to measure the spectroscopic factors of the three analog states in the

mirror nucleus 26Mg, including a spectroscopic factor for the 0+ state. The proton

partial widths estimated from these spectroscopic factors established the 0+ state

contributes .10% of the 25Al(p, γ) reaction rate, with the 3+ state dominating at

higher temperatures. The upper limit extracted for the 1+ proton partial width,

which disagreed with a previous (4He, 3He) study, found it only contributes to

the reaction rate at low temperatures. Previous studies presented evidence for

a negative parity state in 26Mg around 5.7 MeV, consistent with the angular

distribution measured in the current work, which has not had an analog state in
26Si confirmed. Future work should focus on identifying such a state and further

constraining the parameters of the dominant 3+ resonance.

The amount of neutrons available for the weak s-process depends on the 22Ne(α,n)

and 22Ne(α, γ) reaction rates, which proceed through natural-parity states of 26Mg

above the alpha and neutron thresholds. The second experiment in this thesis

used the 25Mg(d, p) reaction to populate states above the 26Mg alpha threshold.

The shapes of the angular distributions constrained the `-transfers populating

those states. This established the spin/parities of states at 10.82, 10.95, 11.08

and 11.11 MeV as 2+, 1−, 2+ and 2+ respectively. Combining these assignments

with previous alpha-transfer studies allowed alpha partial widths to be extracted,

which were used to calculate reaction rates for both reactions. Studies seeking to

further reduce these rate uncertainties should focus on constraining the properties

of the 10.95 and 11.11 MeV states, which dominate the reactions at temperatures

whenever the 22Ne(α,n) rate overtakes that of the 22Ne(α, γ) reaction.
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Chapter 1

Introduction

1.1 Nuclear Astrophysics and the Quest for the

Origin of the Elements

1.1.1 The Origins of Nuclear Astrophysics

Knowledge of the origin of the elements that we see on Earth and the source of the

power of stars in our night sky has been sought by humans from ancient times.

The ancient Greeks considered the Universe to consist of the four corruptible

earthly elements, with the heavenly stars made of the immutable and eternal

aether, while the ancient Chinese held the belief that everything that could be

seen was made of five elements, the relationships of which alter the world. In more

modern times, a complete explanation of the origin of the chemical elements and

the mechanisms that power stars is still sought by scientists. Chemistry explains

the reactions we see in everyday life, but provides no answers as to where the

elements that make up the Earth and other bodies in our Universe came from.

As the nature of the atomic nucleus was uncovered by the work of Nobel laureates

in the early 20th century [2–4], theories about how these nuclear reactions and

properties of nuclei might have a larger scale effect in our Universe began to form.

A large gap in our understanding of stellar bodies came from ignorance of what

the energy source of the Sun (and by extension, other stars) was; the conversion

of gravitational energy to heat (a theory that was endorsed by von Helmholtz and

Lord Kelvin) was in contention with geological records of the Earth [5], while the
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lifetime provided by a fossil fuel like coal would not have even reached the length

of recorded human history.

The first statement that the transmutation of nuclei could be at the origin of the

Sun’s power came from Eddington in the 1920s [6]. Francis Aston had recently

measured the mass of a helium atom to be less than that of 4 hydrogen atoms [7],

which led Eddington to propose that the transformation of hydrogen into helium

could liberate energy via the “lost” mass between the two species, although a lack

of knowledge of nuclear structure at the time prevented a full understanding of

the responsible mechanism. This idea was built upon by Hans Bethe and Charles

L. Critchfield, who derived the proton-proton (p-p) chain in 1938, providing the

detail of the mechanism that liberates energy from the conversion of hydrogen to

helium [8].

Around the same time, the carbon-nitrogen-oxygen (CNO) cycle was developed

independently by Carl von Weizscker [9] and Hans Bethe [8], describing another

process converting hydrogen into helium and powering the Sun. At this time this

process was favoured by Bethe to be the primary source of energy production in

the Sun, as nitrogen was believed to comprise ∼10 % of the Sun’s mass (modern

estimates now place the abundance around 0.1 % by mass, with the p-p chain

understood to be the dominant source of energy production [10]).

The prediction by Fred Hoyle of a resonance state in 12C near the threshold of the
8Be + 4He reaction at solar temperatures indicated an increase in the yield from

this reaction, bridging the gap of production between helium and carbon [11].

Thus, while light nuclei had explanations for their origins, elements heavier than

carbon had no description of their production mechanism. This was a key point

of understanding the origin of the elements in our Galaxy - while the Sun (and

the rest of the observed Universe) is comprised nearly entirely of hydrogen and

helium, it was known that it also included heavier elements (collectively referred

to as metals by astronomers).

Modern estimates of the Sun’s metallicity from spectroscopy are roughly Z=0.012-

0.013 [10, 12], meaning approximately 1% of the Sun’s mass is comprised of

elements heavier than hydrogen and helium. Older stars tend to have smaller

masses and metallicities (as they were formed when the Universe was made of a

higher proportion of hydrogen and helium), while more massive stars have shorter

lifetimes, and so tend to be younger. Thus, massive stars observed will have

been formed more recently from material with a greater proportion of elements

heavier than helium (in addition to their larger masses allowing them to synthesise

elements beyond hydrogen and helium more easily), resulting in typically higher

2



metallicities than older or lower-mass stars.

In 1957, two seminal works for the field of nuclear astrophysics were published.

The first was a paper by Margaret Burbidge, Geoffrey Burbidge, William A.

Fowler, and Fred Hoyle (known as B2FH from the authors’ initials) [13]. As well as

drawing together the ideas of previous scientists on the origin of the elements, the

contributions of various nucleosynthesis processes in different stellar environments

were evaluated using abundance patterns observed by astronomers. It made the

argument that only the lightest elements in the Universe were created during the

Big Bang and the ejection of heavier mass elements synthesised by stars into the

interstellar medium, and the subsequent reformation of younger stars from this

material is what leads to the anti-correlation in metallicity and age of stars. The

various explosive stellar environments that could be responsible for the production

and distribution of elements about our Galaxy were also considered, including

supernovae, massive stars, and novae. Also included were tables describing which

elements were considered to be produced by the slow neutron capture (s) and

rapid neutron capture (r) processes.

The second work of significance published concurrently that year came from

Alastair G. W. Cameron, in the form of “Stellar Evolution, Nuclear Astrophysics,

and Nucleogenesis”. This was humbly described as mere notes for a series of

lectures, but stands as a comprehensive description of the life cycles of stars, the

environments that nuclei can be produced in, and an explanation of elemental

abundances observed in our Galaxy [14–16].

This interplay of theory, experiment and observation to explain the origin of the

elements that is shown in both of these works is a philosophy that still drives

development in the field of nuclear astrophysics today.

1.1.2 Recent Progress in Nuclear Astrophysics

In the past 60 years, the field of nuclear astrophysics has made improvements

in experimental performance, computational power, and increasingly insightful

astronomical observations. This has resulted in significant leaps in our under-

standing of the mechanisms that power stars and create the elements in our

Universe, including which astrophysical processes are responsible for the creation

of the nuclear isotopes (see Figure 1.1).
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Many nuclear reactions are responsible for producing the known isotopes in our

Universe, but it is a subset of these that nuclear astrophysicists consider most

pertinent to reduce the nuclear reaction rate uncertainties of, so as to gain greater

confidence in our interpretation of astronomical observations. However, for many

of these key reactions, direct studies are not yet possible, and a lack of certainty on

key nuclear reaction rates prevents us from fully understanding the processes that

drive nucleosynthesis. A combination of theory and carefully chosen experimental

measurements are needed for indirect studies that advance our understanding of

the key reactions in the production of elements in our galaxy. This often takes

the form of acquiring nuclear information through transfer reactions – populating

key states in a nucleus of interest through the transfer of nucleon(s).

Transfer reactions to constrain nuclear reaction rates and their implications for

stellar nucleosynthesis are what will be discussed in this thesis. By measuring

the 25Mg(d, p)26Mg reaction, the work described in this thesis sought to constrain

the reactions involved in two key nuclear processes. The first experiment

constrained properties of states of 26Mg that are mirror states to those involved

in the 25Al(p, γ)26Si reaction at nova temperatures, reducing the uncertainty in

the amount of the γ-ray emitting isotope 26Al produced in nova explosions,

and is discussed in Chapter 4. I was the first author of a paper published

in a peer-reviewed journal (see Ref. [1]) describing the results of this first

experiment. The second experiment constrained properties of states in 26Mg

that the 22Ne(α,n) and 22Ne(α, γ) reactions proceed through, and is discussed in

Chapter 5. Constraining the rates of these reactions is necessary to determine

the amount of neutrons available for nucleosynthesis in the weak s-process.
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Figure 1.1 A chart of nuclear isotopes, showing which astrophysical processes
are understood to create them, from Ref. [17].

1.2 The Synthesis of Nuclear Isotopes in Novae

1.2.1 Nucleosynthesis in Classical Novae

Stars with masses ranging from roughly 0.07-8.0 M� will end their lives as white

dwarfs, compact stellar objects supported by electron degeneracy pressure, in

which no fusion reactions take place [18]. Typical white dwarf (WD) masses are

between 0.5-0.7 M� [19], with radii in the range of 0.8-2.0 R⊕ [20]. The surface of

a typical white dwarf consists of a thin layer of hydrogen upon a layer of helium,

around a core of carbon-oxygen (or possibly oxygen-neon) [21].

In close binary systems consisting of a main-sequence star and a white dwarf,

material from the main-sequence star is accreted on to the surface of the white

dwarf. This material forms a layer of fuel on the envelope of the white dwarf, the

degeneracy of which prevents the material from expanding, despite the increasing

temperature and pressure it experiences as accretion proceeds. When sufficient

material from the companion star has accreted so that the material reaches the

Fermi temperature (∼7×107 K), a thermonuclear runaway consisting of proton

captures occurs [22]. Material is ejected from the surface of the white dwarf, with
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Figure 1.2 Sketch of the processes involved in a classical nova [27].

velocities in excess of 103 km/s. This ejecta is then mixed in to the interstellar

medium (ISM), where it may join molecular clouds and eventually contribute to

the galactic chemical abundance for subsequent generations of stars and planetary

systems [23, 24]. A sketch of this process is shown in Figure 1.2. These events

are observed as classical novae; sudden increases in the luminosity of a star that

subsequently dims over several weeks or months, the galactic rate of which is

predicted to be 50+31
−23 yr−1 [25], ejecting material in to the interstellar medium at

a rate of ∼7×10−3 M� yr−1 [26].

Novae are powered by explosive hydrogen burning, reaching high temperatures

that peak at 0.1-0.4 GK [28]. Several isotopes with low terrestrial abundances are

produced in novae, including large amounts of 13C, 15N, 17O and, depending on

the conditions of the particular nova, 7Li, 20Ne, 26Al or 30Si [29]. The production

of these isotopes results in the formation of pre-solar grains with isotopic ratios

distinct from solar abundances. This allows the identification of pre-solar grains

with likely origins in novae, with signatures such as low 12C/13C, 14N/15N ratios

and high 30Si/28Si, 22Ne/20Ne ratios compared to solar abundances [29, 30].

Observations of abundances of Ar and Ca in novae up to 10 times higher than that

from solar composition have been measured. Experimental studies have sought

to constrain our understanding of the amount of Ar and Ca produced in novae
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[31] and the ratio of sulphur isotopic ratios (33S/32S and 34S/32S) [32]. A ratio of

Al/Mg above the solar abundance ratio, in correlation with excesses of 26Mg, is

also a key indicator of a pre-solar grain of nova origin [33], as is discussed in the

following subsection.

Novae can occur by accretion on to either CO (carbon-oxygen) rich or ONe

(oxygen-neon) rich white dwarves. CO white dwarves are less massive than ONe

white dwarves, with a mass cut of ∼1.1 M� expected [21]. As they reach the

highest temperatures, ONe novae are of the greater interest for understanding

nucleosynthesis. Models of these novae indicate that production of the radioactive

isotopes 22Na and 26Al are expected to be distinct abundance signatures for these

events [34].

1.2.2 Evidence of 26Al in our Galaxy

In contrast to the stable isotope, 27Al, that is widely found on Earth, 26Al is

an unstable isotope that undergoes β-decay. This isotope can be synthesised in

stellar environments in its ground state (26Alg), or as a low-lying isomer (26Alm)

[35]. As can be seen in Figure 1.3, the large angular momentum change of ∆J = 3

associated with the second forbidden decay of the ground state to the excited state

of 26Mg (5+ → 2+) gives it a long half-life of 7.2× 105 yr [36], while the isomeric

state has a super-allowed β-decay with an angular momentum change of ∆J = 0

(0+ → 0+), giving it a much shorter half-life of 6.36 s. While the ground state of
26Mg that 26Alm decays to, by definition, emits no further radiation, the excited

state of 26Mg that 26Alg decays to rapidly γ-decays, giving off a γ ray with a

distinct energy of 1.8087 MeV [37]. It is the measurement of this particular γ-ray

energy by γ-ray telescopes that allows the detection of 26Al in our Galaxy.

Along with the observation of the unstable element Tc in stars [39] and the

observations of neutrinos from the Sun [40], the measurement of the characteristic

radioactive decay line associated with 26Al was one of the first pieces of direct

evidence that stars are active sites of nucleosynthesis [41]. This isotope had been

previously produced in laboratories, with its half-life measured to be ∼106 years,

a much shorter timescale than that of the Universe [42], indicating it must

be actively synthesised. Previous hints at the production of 26Al in stellar

environments had been found in the form of isotopic anomalies in meteorites,
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Figure 1.3 Decay scheme of the ground and isomer states of the isotope 26Al
[38].

with excesses of 26Mg being detected in correlation with excesses of the Al/Mg

ratio, which could be explained by the in situ decay of 26Al [33].

More recent observations of the 1.8087 MeV line from the decay of 26Al have

provided increasingly precise estimates of the amount of the isotope currently

present in our Galaxy. The COMPTEL telescope, on board the Compton

Gamma-ray Observatory, has measured the distribution of the γ ray along the

galactic plane, as can be seen in Figure 1.4, while the intrinsic width of the

emission line has been well constrained by the RHESSI satellite [43]. The

measured Doppler shift of the emission line across the Galaxy indicates it moves

at a higher velocity than other objects, as shown in Figure 1.5. Measurements by

the spectrometer SPI aboard the INTEGRAL satellite have measured the mass

of 26Al in our Galaxy to be 2.8±0.8 M� [44], and more recently, 2.7±0.7 M� [45].

These measurements have also localised the areas of our Galaxy where the flux of

this distinct gamma ray is most intense, indicating which regions are producing
26Al most rapidly. This has identified massive stars in their Wolf-Rayet phase

and their supernovae as the main sites of production of 26Al [46]. However, since

the time of the first detection of the decay of 26Al in our Galaxy, the explosive

environments of novae have been considered possible sources for a significant
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Figure 1.4 Photon flux of the 1809 keV γ ray across the galactic plane,
as observed by SPI aboard INTEGRAL [47].

fraction of the 26Al in our Galaxy [41].

Other sources of Galactic 26Al

The early solar system (ESS) contained a large abundance of 26Al, and its

apparent homogeneous distribution in this epoch allows it to be used as a reliable

chronometer for pre-solar grains measured [49]. However, a simulation of several

radioactive isotopes in our Galaxy by Côté et al. [50] has shown that the amount

of 26Al in the early solar system cannot be explained by our current understanding

of galactic chemical evolution, in the same way that 55Mn and 60Fe can.

Massive stars (of initial mass greater than 10 M�) are well known producers

of significant amounts of 26Al [49]. Simulations of stars with mass 25 M�

and solar metallicities indicate that convective shell carbon burning results in

the production and eventual ejection of a non-negligible amount of 26Al [51],

indicating massive stars as a significant source of 26Al in this phase. In the CCSN

(core-collapse supernova) phase, further 26Al is produced in the ONe shells during

the explosion [52]. Wolf-Rayet stars are pre-CCSN stars which have had their

hydrogen layers removed by strong winds. 26Al is produced via a series of proton
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Figure 1.5 Longitude-velocity diagram comparing the radial velocity from 26Al
observations (dark blue crosses and light blue shaded area) against
other objects in our Galaxy, based on observed Doppler shifts
[48]. Dashed green and red and solid blue lines represent expected
distributions from different kinematic models. The velocities of CO-
traced molecular gas are shown in the colour overlay.

captures in the hydrogen burning phases of these stars, before being ejected in to

the interstellar medium during the Wolf-Rayet phase [53].

During the later stages of the lives of stars of mass 0.6–10 M�, the AGB

(asymptotic giant branch) phase is entered, with core material being dredged

up towards the surface of the star via convection and other mechanisms. For

AGB stars of initial mass greater than 5 M�, hydrogen burning at the base of the

convective envelope leads to proton captures in the Mg-Al region, leading to the

production of 26Al [54], providing some of the galactic abundance of 26Al [49].

Another γ-ray emitting long-lived radioactive isotope, 60Fe (τ1/2=2.62×106 yr),

is produced by massive stars in their CCSN and Wolf-Rayet phases, in addition

to 26Al. Therefore, the observed astronomical 60Fe/26Al flux ratio provides a

calibration point for massive star models [55]. This means, to reliably validate

stellar evolution theory against γ-ray observations of these radioactive isotopes,

the synthesis of both of these radioactive isotopes in several stellar environments

must be understood. This includes understanding the amount of 26Al produced

in nova explosions [56], which is only dependent on a small number of reactions,

including the 25Al(p, γ)26Si reaction [57].
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1.2.3 The Nucleosynthesis of 26Al in Novae

The possibility of novae being a source of 26Al began to be investigated soon after

the detection of isotopic anomalies in meteorites [58–60].

In nova explosions, a series of proton capture reactions and β-decays lead to the

production of 26Al. The reaction network is predicted to end with the following

reactions:
24Mg(p, γ)25Al(β+ ν)25Mg(p, γ)26Al. (1.1)

25Mg

27Si 28Si

25Al

24Mg

26Si

27Al
26Alm
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Figure 1.6 Reaction network around A∼26 in novae. The production pathway
that produces the cosmic γ-ray emitter 26Al g is shown in red. The
25Al(p, γ)26Si reaction instead leads to the production of the short-
lived isomer 26Alm, shown in the orange reaction network.

However, at higher temperatures reached in novae, the 25Al(p, γ)26Si reaction

is activated, and at temperatures above 0.1 GK has the possibility of competing
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effectively with the β-decay of 25Al (τ1/2 = 7.2 s) [61]. This reaction produces 26Si,

which preferentially decays to the short lived 0+ isomeric state of 26Al, instead

of the long-lived 5+ ground state that is responsible for the characteristic γ-ray

emission, as can be seen in Figure 1.6.

The 92 keV resonance that dominates the 25Mg(p, γ)26Al reaction at nova

temperatures has had its strength directly measured at the Laboratory for

Underground Nuclear Astrophysics (LUNA) [62]. More recently, the fractional

decay of this resonance to the ground state of 26Al has been accurately measured

[35], meaning the reaction that produces 26Alg in novae is now well experimentally

constrained. Therefore, the rate of the 25Al(p, γ)26Si reaction is one of the few

reaction rate uncertainties that has the potential to strongly affect the amount

of 26Al produced in nova models [57].

1.2.4 Constraining the 25Al(p, γ)26Si reaction rate at nova

temperatures

At the temperatures involved in novae, the rate of the 25Al(p, γ)26Si reaction de-

pends on resonances in 26Si just above the proton threshold Sp=5.51401(11) MeV

[63]. However, only one of the resonances in 26Si has had its resonance parameters

directly constrained by experiment. This has meant that quantifying strengths

for the other resonances has relied on shell-model calculations for estimates of the

resonance parameters. In addition, some spin/parity ambiguities remain in the

states of 26Si. As mentioned previously, this is one of a small number of the most

significant reactions for the rate of production of 26Al in novae, and to reliably

constrain this reaction rate, more information on the resonance parameters of

this reaction is required. The experiment performed to constrain the rate of this

reaction is described in Chapter 4.
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1.3 Neutron production reactions for the s-process

1.3.1 Neutron Capture Nucleosynthesis

The modern understanding of stellar nucleosynthesis indicates that the produc-

tion of the vast majority of elements heavier than iron is comprised of two neutron-

capture processes: the slow neutron capture process (s-process) and the rapid

neutron capture process (r-process) [64, 65].

Peaks in the abundances of certain heavy elements were seen in the spectra of

elements published by Hans Suess and Harold Urey in 1956 [66]. Peaks were seen

for the elements strontium, barium, and lead (A = 90, 138, 208), which correspond

to the closed neutron shells of N = 50, 82 and 126 that the shell model predicts

to provide structural stability to the corresponding elements. Wider peaks were

also seen at mass numbers of A = 82, A = 130 and A = 196, roughly 8 atomic

mass units less than the nuclei of closed shells.

These abundance patterns are explained by the synthesis of elements through

two neutron capture processes. The peaks at magic numbers can be explained by

the s-process, that involves a series of neutron captures on much longer timescales

than the subsequent β-decays, leading to a reaction pathway that closely follows

the valley of stability in the nuclear chart. This reaction pathway slows down at

magic numbers, where neutron cross sections producing higher mass nuclei are

smaller, leading to larger abundances around A = 90, 138, 208. The contrasting

r-process involves neutron captures on a shorter timescale than the β-decays of

unstable nuclei, meaning the reaction pathway to higher masses approaches the

neutron dripline. Whenever this pathway encounters closed neutron shells (at

so called waiting points), the mass fractions of nuclei accumulate, ultimately

decaying back towards stability with a larger abundance whenever the local

neutron source is exhausted. This results in the production of isotopes with

neutron numbers slightly below that of closed shells, with wider abundance peaks

than the s-process peaks. The solar system abundances of heavy elements, with

the s and r-process peaks labelled, can be seen in Figure 1.7, with the decay back

to stability across the nuclear chart shown in Figure 1.8.
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Figure 1.7 Solar system abundances of the elements as a function of mass
number, with nucleosynthesis processes indicated [65].

Figure 1.8 Pathways for the s and r-process across the nuclear chart, with
closed-shell numbers noted [64].
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The B2FH paper (described in §1.1) provided a table assigning the origin of the

heavy elements to either the s or r-process [13], with Clayton et al. (1961) [67]

providing the first quantitative calculations of the s-process and Seeger et al.

(1964) [68] providing the first quantitative calculations of the r-process.

Modern developments have increased understanding of these two processes, in

terms of their astrophysical sites and the underlying nuclear physics, with each

process understood to provide about half of the elements heavier than iron (with

a smaller amount produced by other processes, for example, the so-called p-

process).

The main historical issue with the r-process has been finding a site for

its nucleosynthesis, with neutron-star mergers and core-collapse supernovae

being considered as environments neutron-rich enough to provide the neutron

flux required for this process. The simultaneous gravitational wave and

electromagnetic radiation detection of the binary neutron-star merger event

designated GW170817 provided spectra that showed the production of r-process

elements, confirming it as a site of the r-process [69].

Several sites are known to be locations of the s-process, which is now understood

to have several components operating in different environments with neutron

density Nn ≥ 1011 cm3, as is discussed in the following subsection.

A key nuclear astrophysics issue for determining the amount of s-process

nucleosynthesis is the amount of free neutrons available for neutron-capture

reactions that drive these processes. The number of neutrons available for each

component of the s-process is dependent on the rate of the reactions that produce

free neutrons in those environments. This means that to understand the amount

of neutron capture nucleosynthesis that can take place in each environment, the

rates of these neutron producing reactions must be quantified. These neutron

production reactions and the different components of the s-process that they

drive are discussed in the following subsection.

1.3.2 Components of the s-process

The main s-process

The main s-process (sometimes simply referred to as the s-process), is responsible

for the production of s-process elements A > 90 and occurs mainly in AGB stars.

These stars contain a thin helium intershell between the degenerate C-O core and
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Figure 1.9 Cross section of a 1 M� AGB star. Regions of the star are plotted
as a mass function on the left, and as a function of radius on the
right. The base of the convective envelope is labelled Mbce, while the
masses at the middle of the hydrogen and helium burning shells are
labelled MH−shell and MHe−shell respectively [70].

convective hydrogen-rich envelope, as can be seen in Figure 1.9.

These environments undergo recurrent thermal pulses, at the start of which a 13C

pocket forms [72]. When this region reaches roughly 90-100 MK, the 13C(α,n)16O

reaction is activated, which is the main source of neutrons for relatively low-mass

AGB stars [73]. For more massive AGB stars, the maximum temperature in the

helium flash can exceed 300 MK, which activates the 22Ne(α,n)25Mg reaction,

which then becomes the dominant neutron source. This can be seen in Figure

1.10.

The strong s-process

The strong s-process, first introduced by Clayton and Rassbach [74], is responsible

for the production of roughly half of the lead found in our Galaxy. Stellar

models have shown this occurs through neutron-capture reactions in low mass, low

metallicity AGB stars [75]. The neutrons required by this process are provided by
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Figure 1.10 Radial and temporal structure of an AGB star, with locations of
neutron production sites for the s-process indicated (left). Neutron
density as a function of time from the 13C(α,n)16O (top right) and
22Ne(α,n)25Mg (bottom right) reactions for a low mass AGB star.
The higher efficiency of the 22Ne(α,n)25Mg neutron production at
later pulses is due to the increase in bottom burning temperature
[71].

the 13C(α,n) reaction, with the majority of the neutron-capture nucleosynthesis

in these environments taking place inside the 13C pocket [76].

The weak s-process

The weak s-process produces elements between Fe and Sr (i.e. of mass number

60 . A . 90) [77]. This process occurs in massive stars (M > 8 M�), a simplified

structure of which can be seen in Figure 1.11, and is predominantly driven by

free neutrons produced by the 22Ne(α,n)25Mg reaction [78].

During the H-burning phases of the star’s evolution, the CNO cycle uses carbon,

nitrogen and oxygen isotopes as catalysts to convert hydrogen nuclei to helium

nuclei. The slowest reaction in this cycle is the 14N(p, γ) reaction, resulting in a

build up of 14N when hydrogen is locally exhausted [80]. 14N then undergoes the
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Figure 1.11 Schematic of the inside of a pre-supernova massive star, with the
timescales for different stages of burning for a star of 25 M� given
[79].

following reaction sequence during He-burning to produce 22Ne [78]:

14N(α, γ)18F(β+ ν)18O(α, γ)22Ne. (1.2)

Due to the large cross section of the 14N(n, p)14C reaction, 14N removes neutrons

from the budget for the s-process. The reaction pathway in equation 1.2 removes

this neutron poison from the local environment, increasing the amount of s-

process nucleosynthesis possible. Once the temperature in the helium core passes

roughly 0.25 GK, the 22Ne(α,n)25Mg (Q value=-478.34(5) keV [81]) reaction

is activated, producing neutrons for the weak s-process [78]. However, the
22Ne(α, γ)26Mg reaction (Q value=10614.74(3) keV [81]) can be activated at

lower temperatures than the 22Ne(α,n)25Mg reaction, removing α-particles that

would have otherwise been available to produce free neutrons. At the end of

the He-burning phase, not all the 22Ne in the star is used up, allowing the
22Ne(α,n)25Mg and 22Ne(α, γ)26Mg reactions to be re-activated using α-particles

produced in the 12C(12C,α)20Ne reaction during C-burning. This provides a

second burst of neutrons for the weak s-process, which can provide a neutron

exposure comparable to that generated in the He-burning core previously [82].

Neutron contributions from the 12C(12C,n)23Mg reaction have also been shown
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to be responsible for the production of a small amount of s-process elements,

but 22Ne(α,n)25Mg remains the main source of neutrons for the production of

elements in this mass range [83]. Therefore, for a full understanding of neutron

production in the weak s-process, the reaction rates of both the 22Ne(α,n)25Mg

and 22Ne(α, γ)26Mg reactions across the appropriate temperature ranges must be

reliably quantified.

1.3.3 Constraining the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg

reactions for the weak s-process

Understanding the neutron budget available in massive stars will reduce uncer-

tainty on all the (n, γ) reactions that take place in the weak s-process, including

the 59Fe(n, γ) reaction, which produces the γ-ray emitting long-lived isotope 60Fe

in massive stars [55]. As mentioned previously in §1.2.3, the 60Fe/26Al flux ratio

is used as an indicator for the accuracy of models of massive stars, meaning

understanding the nucleosynthesis of these radioactive isotopes allows bench-

marking of stellar models with greater certainty [56].

Both the 22Ne(α,n)25Mg and 22Ne(α, γ)26Mg reactions proceed through natural

parity resonance states in 26Mg. The 22Ne(α, γ)26Mg reaction proceeds through

excited states above the alpha threshold (Sα=10614.8(1) keV [84]), while the

endothermic 22Ne(α,n)25Mg reaction involves states above the neutron threshold

(Sn=11093.09(4) keV [84]).

While the 22Ne(α, γ)26Mg reaction can operate at lower temperatures in stars

(0.1–0.2 GK), the 22Ne(α,n)25Mg reaction is not activated until the end of helium

burning in massive stars (temperatures in the range 0.2–0.3 GK). Many properties

of the important resonance states in 26Mg remain uncertain. These states of

interest have been investigated in several reaction studies, including direct and

indirect reactions that allow the extraction of the properties of states that these

resonances proceed through, including the excitation energies, partial widths and

spin/parities of these states.

The second experiment that comprises this thesis, described in Chapter 5, seeks

to constrain the rates of the 22Ne(α,n)25Mg and 22Ne(α, γ)26Mg reactions by

investigating properties of states of 26Mg above the alpha threshold through the
25Mg(d, p) reaction and so constrain the number of neutrons available for the

weak s-process.
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Chapter 2

Theory

2.1 Overview

As previously mentioned, this thesis describes two experiments using the
25Mg(d, p)26Mg reaction to constrain the 25Al(p, γ)26Si reaction at nova tem-

peratures and the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reactions in massive stars

for the weak s-process. These astrophysically significant reactions involve two

charged nuclei fusing together, after tunnelling through the potential barrier

between the two nuclei. The rates of these reactions of astrophysical interest

are dominated by resonances associated with states in their compound nuclei,
26Si, and its mirror nucleus, 26Mg.

At nova temperatures, the 25Al(p, γ)26Si reaction is known to proceed through a

small number of resonance states above the proton threshold. At the tempera-

tures in environments the weak s-process proceeds through, the 22Ne(α, γ)26Mg

and 22Ne(α,n)25Mg reactions proceed through natural-parity (0+, 1−, 2+, 3−...)

resonance states above the alpha and neutron thresholds in 26Mg respectively.

Despite the high level density at these excitation energies in 26Mg, it is only

a small number of these resonances that dominate the 22Ne(α, γ)26Mg and
22Ne(α,n)25Mg reaction rates. Extracting parameters of the resonances of these

reactions directly is very challenging, for a variety of reasons. To measure the

resonance parameters of the 25Al(p, γ) reaction, a beam of the radioactive isotope
25Al is needed, which cannot currently be produced at sufficiently high intensities.

For the 22Ne + α reactions, measurements of the relevant resonances require very

low beam energies, where the reaction yield becomes increasingly inhibited by the
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Coulomb barrier. This means that to quantify the reaction rates, the properties

of the resonance states must be constrained through indirect methods.

Transfer reactions are a useful tool to probe the resonant states of interest, al-

lowing measurements of their excitation energies and the differential cross section

angular distributions of the transfer reactions populating those states. The shapes

of these angular distributions indicate the possible orbital angular momentum

(`) transfers that can populate the states, constraining the spin/parities of the

states. The magnitude of the angular distribution for a state determines its

spectroscopic factor, i.e., to what degree the state resembles a pure single-particle

state. Transfer reactions as a tool to extract properties of resonant states are

discussed in greater detail in this chapter.

States in 26Si that the 25Al(p, γ) reaction proceeds through have been ex-

perimentally identified, but only one of these states has had its resonance

properties experimentally measured, and some spin/parities ambiguities remain.

By measuring the neutron spectroscopic factors of states in 26Mg, the proton

partial widths and thus, the resonance strengths of the mirror states in 26Si, will

be estimated.

The spin/parities of nuclear states above the 26Mg alpha threshold will be

constrained by determining the `-transfers that populate them in the 25Mg(d, p)

reaction, which have distinct angular distribution shapes. This will allow the

alpha partial widths of states previously identified in alpha transfer reactions to be

constrained, reducing the uncertainty in their contribution to the 22Ne(α, γ)26Mg

and 22Ne(α,n)25Mg reactions.

How transfer reactions, combined with nuclear theory, can constrain the reso-

nance properties of nuclear states is discussed in more detail in this chapter.

Understanding these properties allows reaction rates in stellar environments

to be calculated, improving understanding of the reactions that drive stellar

nucleosynthesis.
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2.2 Charged particle resonant reactions in stellar

environments

In a stellar medium of temperature, T , the velocity distribution of the particles

can be described by the Maxwell-Boltzmann distribution, φ(v):

φ(v) =
( m

2πkT

)3/2

4πv2 exp

(
−mv

2

2kT

)
, (2.1)

where

m ≡ mass of particle

k ≡ Boltzmann constant

T ≡ temperature of stellar medium.

The stellar environments of interest in this thesis have temperatures in the range

∼0.1–0.4 GK. This corresponds to average kinetic energies in the range ∼9–

35 keV. The ions that take part in nuclear reactions in stellar plasmas will have

rest masses of the order of several GeV (with the proton having a rest mass of

938 MeV). As the kinetic energies of these particles are much less than their

rest masses, the non-relativistic equation for kinetic energy of a particle of mass

m and velocity v, E = 1
2
mv2, can be substituted into the Maxwell Boltzmann

distribution to be written in terms of kinetic energy:

φ(v) =

(
1

2πkT

)3/2

4πm3/2v2 exp

(
−mv

2

2kT

)
, (2.2)

φ(E) =

(
1

2πkT

)3/2

8πm1/2E exp

(
− E

kT

)
∝ E exp

(
− E

kT

)
. (2.3)

At stellar temperatures, nuclei have kinetic energies lower than the Coulomb

potential barrier that originates in the electrostatic repulsion between the two

positively charged nuclei. Therefore, for a charged particle reaction to proceed,

a charged nucleus must tunnel through the Coulomb potential barrier, VC :

VC =
Z1Z2e

2

4πε0r
, (2.4)

where
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Z1 ≡ atomic number of first reactant

Z2 ≡ atomic number of second reactant

e ≡ elementary charge

ε0 ≡ permittivity of free space

r ≡ separation of two reactants.

Considering a particle of mass m and energy E approaching a Coulomb barrier,

the probability of transmission, T (E), (assuming no centrifugal barrier) can be

approximated by [85]:

T (E) ≈ exp

(
−2π

√
m

2E~2
Z1Z2e

2

)
. (2.5)

The probability of penetration through the Coulomb barrier occurring for a

particle in a stellar environment of energy E, P (E), is given by the product

of the energy distribution of particles, φ(E), (equation 2.3) and the quantum

tunneling probability, T (E), (equation 2.5). The region of maximum penetration

probability is known as the Gamow peak. The Gamow peak indicates to nuclear

astrophysicists which centre-of-mass energies barrier penetration is most likely at

for two charged particles at a certain stellar temperature, and therefore, which

resonance states may contribute to nuclear reactions between those two charged

particles at that temperature.

Estimates of the centre-of-mass energies at which the Gamow peak is at its

highest, E0, and the full width half maximum (FWHM) of that peak, ∆E, can

be calculated empirically using the following equations [85]:

E0 = 0.122

(
Z2

1Z
2
2

M1M2

M1 +M2

T 2
9

)1/3

MeV, (2.6)

∆E = 0.237

(
Z2

1Z
2
2

M1M2

M1 +M2

T 5
9

)1/6

MeV, (2.7)

where Z1, Z2, M1 and M2 refer to the atomic numbers and masses of the two

nuclei respectively, and T9 is the temperature in units of GK.

For the 25Al(p, γ)26Si reaction at a temperature of 0.3 GK (reached during

nova explosions), the centre-of-mass Gamow window (E0 ± ∆E/2) covers 0.20–

0.40 MeV, corresponding to an excitation energy range of Ex=5.71–5.91 MeV in
26Si. This is shown in Figure 2.1, with the resonance states in 26Si thought to

contribute to the reaction rate at this temperature labelled.
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Figure 2.1 The Gamow peak of the 25Al(p, γ)26Si reaction at a stellar
temperature of 0.3 GK, calculated as a product of the Maxwell-
Boltzmann distribution (equation 2.3) and the tunnelling probability
(equation 2.5). The peak is given as a function of the excitation
energy of the compound nucleus, with the labelled states within the
Gamow window showing the resonances that can contribute to this
reaction at this temperature.

Many nuclear reaction rates are dominated by nuclear resonances in the Gamow

peak – energies at which the cross section of the reaction will increase sharply,

associated with certain discrete excited states of the compound nucleus formed

by the reaction.

The Breit-Wigner formula describes the contribution of a narrow and well-isolated

resonance, Er, to the cross section of a reaction, for a particle a entering the

nucleus, and a particle b leaving the compound nucleus, at a centre-of-mass energy

ECM :

σ =
πλ2

aωΓaΓb
(Er − ECM)2 + Γ2/4

, (2.8)
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where

σ ≡ resonant cross section of reaction (a, b)

λ ≡ reduced de Broglie wavelength of incoming particle

Γa ≡ partial width of entrance channel for the compound nucleus

Γb ≡ partial width of exit channel for the compound nucleus

Γ ≡ total width of resonance state in compound nucleus

ω ≡ statistical factor.

The statistical factor, ω, is given by:

ω =
(2Jf + 1)

(2Jp + 1)(2Ji + 1)
, (2.9)

where

Jf ≡ spin of state populated in compound nucleus

Jp ≡ spin of projectile nucleus

Ji ≡ spin of initial state in target nucleus.

The reaction rate per particle pair at a certain stellar temperature, T , is given

by:

〈σv〉 =

√
8

πµ

1

(kT )3/2

∫ ∞
0

σ(E)Ee−E/(kT )dE cm3 s−1 mol−1. (2.10)

For a narrow resonance, one with a total width much smaller than the Gamow

window, one can take the Maxwell-Boltzmann distribution, all the widths, and

the de Broglie wavelength of the incoming particle to be constant across the

resonance. Substituting in the formula for the resonant cross section given

in equation 2.8 in to equation 2.10 and evaluating the integral results in an

expression for the reaction rate per unit of time and unit of volume from a narrow

resonance at a certain stellar temperature [86]:

NA〈σv〉 = 1.540× 1011(µT9)−3/2ωγe−Eres/(kT9) cm3 s−1 mol−1. (2.11)

Where NA is Avogadro’s number, µ is the reduced mass of the system, T9 is

the temperature in GK, ωγ is the resonance strength in MeV and Eres is the

resonance energy in the centre of mass system in MeV. Thus, the reaction rate at
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a certain stellar temperature, T , is dependent on the resonance energies and the

resonance strengths of states in the Gamow window. The resonance strength for

a target nucleus of initial state i capturing into a compound state f in a reaction

(a, b) is given by:

ωγif =
(2Jf + 1)

(2Jp + 1)(2Ji + 1)

ΓafΓbf
Γtotalf

, (2.12)

where

Γaf ≡ partial width of entrance channel for the compound nucleus state f

Γbf ≡ partial width of exit channel for the compound nucleus state f

Γtotalf ≡ total width of channels for the compound nucleus state f .

Thus, for a nucleus in an initial state i, the resonant reaction rate over all

compound nuclear states f above the reaction threshold, for narrow isolated

resonances, is given by:

NA〈σv〉res i = 1.540× 1011(µT9)−3/2

×
∑
f

ωγife
−Eres/(kT9) cm3 s−1 mol−1. (2.13)

In addition to the resonant capture into specific excited energy levels, the non-

resonant capture into states into the residual nucleus will contribute to the

reaction. The rate from this mechanism is described by the equation from Ref.

[87]:

NA〈σv〉DC = 1.86× 107(µT9)−3/2

×
∑
f

S(E0)ife
−23.195/T

1/3
9 cm3 s−1 mol−1,

(2.14)

where S(E0)if is the S-factor for a state f in the compound nucleus. The S-factor

factors out the dependency of the Coulomb barrier from the cross section (σ),

leaving a component that describes only the nuclear component of the reaction

probability at a centre-of-mass energy ECM :

S(ECM) =
ECM

exp(−2πη)
σ(ECM), (2.15)
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where η is the dimensionless Sommerfeld parameter:

η =
Z1Z2e

2

4πε0~v
, (2.16)

where

Z1Z2e
2 ≡ product of the charges of the reactants

v ≡ magnitude of relative incident velocity.

For low temperature stellar environments, the direct capture rate will generally

make the most significant contribution to the stellar reaction rate. However,

in stellar environments at higher temperatures, if a resonance is present in the

Gamow window of a reaction in a stellar environment, the resonant component

of the rate can dominate over the non-resonant component [85].

Using equation 2.12, resonance strengths for a proton capture reaction (assuming

other decay channels are not open, as is the case just above the proton threshold

in 26Si) are given by:

ωγ =
(2Jf + 1)

(2Jp + 1)(2Ji + 1)

ΓpΓγ
Γp + Γγ

, (2.17)

where

Γp ≡ proton partial width

Γγ ≡ γ partial width.

Whenever one partial width is significantly smaller than the other, the smaller

partial width will determine the resonance strength, e.g., for a proton capture

reaction where Γp � Γγ (with no other exit channels open), the resonance

strength depends strongly on the proton partial width:

ωγ = ω
ΓpΓγ

Γp + Γγ
≈ ω

ΓpΓγ
Γγ

= ωΓp. (2.18)

At excitation energies just above the proton threshold in nuclei, the proton partial

widths of states are often smaller than the γ partial widths, meaning that resonant

capture into these states is often dominated by the proton partial widths. As

discussed in Chapter 4, this is the case for the 1+ state in 26Si just above the

proton threshold, which is predicted to have a proton width many orders of
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magnitude smaller than the γ partial width [86], meaning its resonance strength

is likely completely determined by its proton partial width. This is also true to a

lesser extent for the 0+ state just above the proton threshold in 26Si, which has

a predicted proton partial width about half that of its γ partial width [86].

The partial width of a state (e.g. the proton partial width Γp), can be calculated

as a product of its single-particle width, Γsp [88], which is defined as the FWHM

of the resonance of a pure single particle state, and its spectroscopic factor, C2S,

which represents how much the state resembles that which would be described

by the nuclear shell model as a pure “single particle” excited state:

Γp = C2SΓsp. (2.19)

The calculation of the single-particle width of a resonance state and the estimation

of its spectroscopic factor will be discussed in the following subsections.

2.2.1 Determination of partial widths for astrophysically

relevant resonance states

The single-particle width of a state is related to the reduced width γ2 and barrier

penetration probability P (`, E) of that state [85]:

Γsp = 2γ2P (`, E). (2.20)

The reduced width of a state can be calculated as follows [86]:

γ2 =
~2c2

2µR2
c

, (2.21)

where

~ ≡ the reduced Planck’s constant

c ≡ the speed of light in a vacuum

µ ≡ the reduced mass of the system

Rc ≡ radius of the channel.

As well as the `-transfer populating a state, the penetrability is sensitive to the
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Figure 2.2 Dependence of the penetrability factor on the `-transfer and the
centre-of-mass energy for the 12C+p reaction [85].

energy E of the system, as shown in Figure 2.2, which is dependent on the

excitation energy of the state in the compound nucleus being populated.

The centrifugal barrier suppresses nuclear-fusion reactions, meaning reactions

with lower orbital angular momenta are more likely to penetrate to the target

nucleus and complete the reaction, as can be seen in Figure 2.2. If conservation

rules permit a mixture of `-transfers to populate a state, lower orbital angular

momenta generally will have a higher penetrability likelihood, P (`, E), i.e. s-

wave resonances will dominate over p-wave resonances, which will dominate over

d-wave resonances and so forth. This means the lowest permitted `-transfer

generally has the greatest effect on the partial width value when a mixture of `-

transfers can populate the state. For charged particle reactions, the penetrability

factor of each `-transfer that can populate a state have a different dependency on

the centre-of-mass energy (shown in Figure 2.2). This means the centre-of-mass

energy, and thus the excitation energy of the populated state, affects the relative

contribution of angular momentum values to the particle width of the state.

This dependence of the partial widths on the orbital angular momentum values

is much more pronounced in proton-capture reactions (e.g. 25Al(p, γ)26Si) than

in α-capture reactions (e.g. 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg).
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Spectroscopic factors and partial widths of nuclear states can be estimated using

shell-model calculations. For example, Richter et al. [86] used the Universal sd-

shell B (USDB) model to calculate spectroscopic factors and proton partial widths

for positive-parity states in the sd shell nucleus 26Si below an excitation energy of

8 MeV. Spectroscopic factors (and by extension, partial widths) of nuclear states

can also be extracted experimentally and are one of the most common properties

to be measured in transfer reaction experiments.

2.3 Modelling transfer reactions using reaction

theory

2.3.1 Transfer reactions to extract resonance properties of

states

Transfer reactions are used to probe the single-particle strengths of nuclear

states. This is quantified by comparing the experimental cross sections to those

predicted by nuclear theory calculations for a single particle state to extract the

spectroscopic factor of the state. The spectroscopic factor represents how much

the state resembles that which would be described by the shell-model as a pure

“single-particle” state [89], and is experimentally determined using the following

equation:

σexp = C2Sσth, (2.22)

where C2S is the spectroscopic factor of that state (with C the isospin Clebsch-

Gordon coefficient) and σexp and σth represent the experimental and theoretical

cross sections for that state respectively. The theoretical cross section, σth, of an

excited state is found by calculating the cross section expected for a pure single-

particle state, with distorted wave Born approximation (DWBA) calculations

performed in the current work.

Using the (d, p) stripping reaction to study excited nuclear states is one of

the most commonly used transfer mechanisms to gain knowledge about nuclear

structure [90]. In the 25Mg(d, p)26Mg reaction described in this thesis, more than

one `-transfer may populate an excited state, depending on the spin/parity of

that state, with the strength of each `-transfer being described by an individual
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spectroscopic factor.

The assumption of isospin symmetry to estimate properties of mirror nuclei

(nuclei with proton and neutron numbers exchanged) is a useful tool for nuclear

astrophysics, with Refs. [91] and [92] describing how the spectroscopic factors

of the neutron-rich nucleus in a mirror pair can be used to estimate proton

partial widths in the proton-rich nucleus in that pair. As described in Chapter

4, the experimentally measured neutron spectroscopic factors of states in 26Mg

will be used to estimate the proton spectroscopic factors in 26Si, and thus provide

estimates for proton partial widths of states relevant to the 25Al(p, γ)26Si reaction

at nova temperatures.

Isospin symmetry of mirror states

Each nuclear state can be considered to have a total isospin of T , with a

projection TZ , which are conserved in nuclear reactions and decays. With

convention defining the proton and neutron to have isospin projections −1
2

and

+1
2

respectively, a nucleus of Z protons and N neutrons will have TZ given by:

TZ = (N − Z)/2. (2.23)

For a state of given T , the value of TZ will be in the range TZ = T , T − 1,...,−T .

As the interactions of protons and neutrons through the strong force are very

similar, they can be considered to be projections of the same fermion. From this,

mirror nuclei (those nuclei with numbers of protons and neutrons exchanged),

are expected to have states with identical spins and parities. This property of

nuclei is known as mirror symmetry, the validity of which is dependent on isospin

conservation [93], and states in sets of nuclei with shared mass numbers and the

same isospins are referred to as isobaric analogue states (IAS).

At lower excitation energies, with guidance from shell model predictions of the

existence of states, identification of mirror pairs can be done with a high degree of

certainty. In addition, light and medium mass stable nuclei tend to have simpler

structures than more massive nuclei, due to single-particle excitations playing a

more significant role in their structure than collective excitations. The nuclear

interaction is expected to contribute only slightly to isospin-breaking effects in

nuclei [94], and since the electromagnetic force is well understood, the difference

in states originating in the Coulomb force can be easily described [94].
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This means, for light and medium-mass nuclei, if the mass difference of the ground

states of a mirror-pair is known, the energy level density at the excitation energy

of interest is low enough, and the spin/parities of the excited states are well

known, the assumption of isospin symmetry between states of the same Jπ at

similar excitation energies is a good approximation. Therefore, in circumstances

where measuring properties of nuclear states directly is challenging, probing

mirror states is an effective approximation for extracting properties of states,

including spectroscopic factors. This approximation of isospin symmetry is used

in Chapter 4 to estimate properties of states in 26Si through the measurement of

properties of states in its mirror nucleus 26Mg.

As the excitation energy of a nucleus increases, the density of energy states

increases. Due to this, determining which states are analogous between mirror

nuclei become increasingly difficult at higher energies, even with guidance from

shell models of which states are expected to exist. However, the nuclear

interaction is expected to contribute only slightly to isospin-breaking effects in

nuclei [94], and the electromagnetic force is well understood, so the difference in

states originating in the Coulomb force can be easily described [94].

2.3.2 Direct and compound reaction mechanisms

The population of states through the (d, p) reaction can be described as happening

through either a direct or a compound reaction mechanism, schematics of which

can be seen in Figure 2.3. To describe the angular distributions of transfer

reactions and thus extract accurate spectroscopic factors, fitting the experimental

data with both reaction mechanisms is often necessary. This can be seen in

Chapter 4, where some states of interest in 26Mg for the 25Al(p, γ)26Si reaction

required a compound contribution to model their angular distributions (see, for

example, Figures 4.8 and 4.9).

By assuming that the fluctuations of excitation functions of intermediate

processes sum to zero, the total cross section (σ) of a reaction can be assumed to

simply be the sum of the direct and compound contributions [95]:

σ = σDI +RσCN , (2.24)
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where σDI is the direct reaction mechanism contribution, and σCN is the output

from Hauser-Feshbach calculations (described in §2.4.1), scaled down by a

reduction factor R [95].

The direct reaction mechanism tends to dominate (d, p) reactions at high beam

energies, whereas the compound reaction mechanism is the dominant reaction

pathway at low beam energies (generally contributing to the reaction yield at

beam energies below 10 MeV [96]). At “intermediate” beam energies, both

mechanisms can contribute to the reaction. For (d, p) reactions, this behaviour

has been observed at beam energies between 6 and 12 MeV [97, 98].

In transfer reactions, the direct reaction mechanism involves the transferred

nucleon (or set of nucleons) directly entering the excited state of the final nucleus,

on a typically very short reaction time of roughly ∼10−22 s. The differential cross

section of these reactions has a strong dependency on the angle the products are

measured at, and so the angular distributions have distinct shapes, with unique

angular distributions based on the orbital angular momentum transfer involved

in the reaction. This reaction mechanism can be described using techniques like

the DWBA, described in section 2.3.

In contrast, the compound reaction mechanism involves the incoming nucleus

fusing with the target nucleus, creating a compound state, which decays to

the final product nuclei. This reaction mechanism typically has a timescale of

∼10−18–10−16 s and gives nearly flat differential cross section angular distributions

in the centre-of-mass frame. Statistical methods like the Hauser-Feshbach method

have been used to calculate the compound component of reactions.
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Figure 2.3 Direct and compound reaction mechanisms for stripping reaction
a(A,B)b reaction, with a compound nucleus C*. This illustrates how
compound reactions are associated with smaller impact parameters
(labelled b in this figure) in transfer reactions than direct reactions
[96].

Studies of the 24Mg(d, p)25Mg reaction have used the approach of summing

the direct and compound reaction mechanisms to fit experimental angular

distributions, as seen in Refs. [97–99]. Measurements of the 12C(7Li, t)16O

reaction to constrain resonance parameters for the 12C(α, γ)16O reaction also

used this method effectively [100, 101]. These studies calculated the contribution

to the differential cross section angular distributions of the compound reaction

mechanism using Hauser-Feshbach calculations, which are discussed in §2.4.1.

2.3.3 DWBA Theory Overview

The distorted wave Born approximation (DWBA) is a technique commonly used

to model nuclear reactions. DWBA theory models the reaction using a single-step,

first-order perturbation and has been used extensively to extract spectroscopic

information from nuclear states by modelling transfer reactions, including (d, p)
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reactions. The effects of the breakup of the weakly bound (BE=2.2 MeV)

deuteron are not modelled in the reaction (although these effects may be included

in the deuteron-target potential), however the study of Nguyen et al. [102] finds

that the effects of finite-range deuteron breakup on the size of calculated cross

sections are less than 10% at low energies (below 20 MeV/u). In this subsection,

the neutron-transfer reaction A(d, p)B is considered, the co-ordinates of which

are shown in Figure 2.4.

Figure 2.4 Definitions of co-ordinate scheme for DWBA calculations [90].

The DWBA amplitude for the (d, p) reaction, Tdp, is defined by the following

expression:

Tdp =
√
S

∫
drrrdRRRdχ

†
p(RRRp)φ(rrrn)Vnp(rrr)ψd(rrr)χd(RRRd), (2.25)

where χd and χp are the distorted waves describing the deuteron-target elastic

scattering in the entrance channel, and the relative motion between the proton

and the final nucleus, respectively. The single-particle wavefunction of the

neutron transferred from the deuteron to the target state is represented by φ,

while the ground state of the deuteron is represented by ψd. Vnp represents the

neutron-proton interaction in the incident deuteron, while the spectroscopic factor

of the relevant state in the final nucleus is represented by S. The co-ordinates rrr,

RRRd, RRRp and rrr are defined in Figure 2.4.

Often it is not practical to obtain the amplitude of the reaction directly from the

representation in equation 2.25 and other forms must be derived. For example, the

amplitude of the reaction fdp at an angle θ can be calculated using the following
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expression:

fdp(θ) ≡ −
µpB
2π~2

Tdp = − µpB
2π~2

∫
dτA+2χ

†
B(τB)φ†pχ

†
kp

(RRRp)

×
(
Vnp(rrr) +

∑
i∈A

Vip(rrrip)− Up(RRRp)

)
Ψ

(+)
kd

(n, p, A), (2.26)

where µpB is the reduced mass of the p-B system and χkp is a distorted wave. An

auxiliary potential, Up, is commonly chosen to take the flux from elastic scattering

into account.

The differential cross section of the reaction A(d, p)B,
dσdp
dΩ

, is related to the

amplitude of the reaction at an angle θ, fdp(θ), by the following equation:

dσdp
dΩ

=

(
vpB
vdA

)
|fdp(θ)|2, (2.27)

where vpB is the velocity of the proton relative to the target in the exit channel,

and vdA is the velocity of the deuteron relative to the target in the entrance

channel. A more detailed formalisation of the DWBA, including its limitations,

can be found in Ref. [90].

Many modern codes allow DWBA calculations to be performed, one of the most

popular of which is fresco [103, 104], with several details of the reaction required

to be specified, as described below.

2.3.4 DWBA Calculations

For both experiments described in this thesis, the differential cross section angular

distributions were compared to finite-range DWBA calculations performed by the

nuclear reaction program fresco [103, 104]. By providing the relevant nuclear

information (including final state information and the potentials involved in the

reaction) to the program, calculations for a single-particle state can be performed,

with the differential cross section angular distribution outputted.

Input required for DWBA Calculations

The details of the final excited state of the target must be described in terms

of what angular momentum transfer (`) populates the state, the total angular
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momentum (J) of that state, and the number of nodes in its wavefunction (equal

to the principal quantum number of the state for fresco).

For the reaction A(d, p)B, there are five potentials to be described. This includes

the potentials between A-d (the entrance channel potential), B-p (the exit channel

potential), A-n (the potential experienced by the transferred neutron) and A-

p (the core-core potential). These interactions are usually described with a

Coulomb potential, a volume potential with real and imaginary components, a

surface potential with an imaginary component, and a spin-orbit potential with

a real component. The non-Coulomb potentials are commonly described by a

Woods-Saxon shape:

V (r) =
−V0

1 + exp( r−R
a

)
, (2.28)

where the potential has depth V0, half-height radius R and diffuseness a. The

other potential required to describe the reaction is the n-p potential in the

deuteron, which is usually described by a Gaussian potential or a Reid soft-core

potential. The parameters for these potentials are found by fitting to scattering

data sets. The parameters for bound and unbound DWBA calculations used in

the current work are described below.

In the first experiment described in this thesis, the experimental differential

cross section angular distributions were compared to those expected for a pure

single-particle state, calculated using the DWBA approximation with fresco,

to extract spectroscopic factors for nuclear states.

A selection of optical parameter sets were considered, the beam energy and mass

number ranges of which overlapped with our experimental configuration. By

considering several different arrangements, the set that matched the shape of

angular distributions most closely was chosen, shown in Table 2.1. An uncertainty

of ∼20% in the extracted spectroscopic factor from the choice of parameters for

modelling the reaction was estimated, based on the range in spectroscopic factors

extracted when considering different parameter sets, for example Refs. [105, 106].

A Gaussian potential was used to describe the p+ n interaction in the deuteron,

similar to that in Refs. [107, 108]:

V (r) = −V0e
(−r/r0)2 , (2.29)

where

V0 ≡ depth of potential
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Potential Vv rv av Wv rwv awv WD rD aD Vso rso aso rc
25Mg + d [110] 83.9 1.17 0.81 0.0 1.56 0.83 18.6 1.33 0.60 3.70 1.23 0.81 1.70
26Mg + p [111] 53.7 1.17 0.67 0.64 1.17 0.67 8.02 1.34 0.53 5.69 0.97 0.59 1.33
25Mg + p [111] 53.7 1.17 0.67 0.64 1.17 0.67 8.02 1.34 0.53 5.69 0.97 0.59 1.33
25Mg + n [112] 52.1 1.16 0.64 - - - - - - 5.50 0.96 0.59 1.26

Table 2.1 Optical model potential parameters used for DWBA calculations
of angular distributions for states excited in the 25Mg(d, p)26Mg
reaction, with a deuteron beam energy of 8 MeV. The entrance and
exit channels of the reaction are described by the first two potential
sets respectively. The third set refers to the core-core interaction in
the reaction and the fourth corresponds to the binding energy of the
residual nucleus. Energies are in MeV and distances in fm, with
parameters having meanings are defined in Ref. [111].

r0 ≡ root mean squared of potential.

Parameters of V0=72.2 MeV and r0=1.48 fm were chosen, extracted from the

fitting of the potential to reproduce the deuteron binding energy, as performed

in Ref. [109]. The other chosen parameter sets, as well as their corresponding

channels and interactions, are shown in Table 2.1. In these finite-range DWBA

calculations, the correct binding energies of the excited states of 26Mg were

produced by varying the depth of the central potential.

As the states measured in the second experiment in this thesis were close to or

above the neutron threshold, the weakly bound approximation [113–115] was used

for the DWBA calculations. This calculation involves forming an excited state

at the relevant excitation energy, then giving it an artificial finite binding energy

(0.2 MeV in the current work). As the artificial binding energy has little effect on

the shape of the angular distribution, this approximation does not hamper efforts

to distinguish between the shapes of different `-transfers, and so is appropriate

for the analysis performed for the second experiment in this thesis. The weakly-

bound state approximation has been used previously in Refs. [116], [117] and

[118] to model transfer reactions.

These DWBA calculations were again performed using fresco, with the

potential parameters used shown in Table 2.2. As in the bound state calculations

previously described, a Gaussian potential was used to describe the p + n

interaction of the deuteron, with parameters V0=72.2 MeV and r0=1.48 fm

chosen.
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Potential Vv rv av Wv rwv awv WD rD aD Vso rso aso rc
25Mg + d [110] 83.2 1.17 0.81 0.0 1.56 0.83 18.2 1.33 0.60 3.70 1.23 0.81 1.70
26Mg + p [111] 51.7 1.17 0.67 0.67 1.17 0.67 8.39 1.34 0.53 5.58 0.97 0.59 1.33
25Mg + p [111] 51.1 1.17 0.67 1.08 1.17 0.67 9.10 1.34 0.53 5.58 0.96 0.59 1.26
25Mg + n [112] 50.5 1.16 0.64 - - - - - - 5.37 0.96 0.59 1.26

Table 2.2 Optical model potential parameters used for DWBA calculations
of angular distributions for states excited in the 25Mg(d, p)26Mg
reaction, with a deuteron beam energy of 13 MeV. The entrance and
exit channels of the reaction are described by the first two potential
sets respectively. The third set refers to the core-core interaction in
the reaction and the fourth corresponds to the binding energy of the
residual nucleus. Energies are in MeV and distances in fm, with
parameters having meanings are defined in Ref. [111].

2.4 Modelling the contribution of the compound

reaction to the (d, p) stripping reaction

2.4.1 Hauser-Feshbach Theory

Hauser-Feshbach (HF) theory is a statistical model of nuclear reactions, of which

the quantum mechanical formalism describing the reaction cross sections of final

excited states was described in 1952 by Hauser and Feshbach [119]. The simplest

form of the theory is based on the Bohr independence hypothesis, which assumes

the decay of the compound nucleus is independent of its formation. This version

of HF theory gives the cross section of entering a final state β as the product of

the probability of forming a compound nucleus α and the probability of decay

into a final state β:

σαβ = σαPβ. (2.30)

For a particular orbital angular momentum, the compound cross section for an

incident particle of reduced de Broglie wavelength λ and transmission coefficient

Tα populating a compound state α is given by:

σα = πλ2
αTα, (2.31)

with the probability of decay to a final state β given by:

Pβ = λTβ̂ =
Tβ̂∑
α

Tα
, (2.32)

40



where the time reversed states are designated α̂ and β̂ and λ is a constant.

This finally gives the cross section of the formation of a compound nucleus α and

that decaying in to a final state β:

σαβ = πλ2
α

TαTβ̂∑
α

Tα
, (2.33)

giving effectively the simplest form of the Hauser-Feshbach formula [120].

Several improvements to this theory have been implemented over time. Correla-

tions between the incident and outgoing waves in the elastic channel are taken

in to account by the width fluctuation correction. In addition, the knowledge of

nuclear structure that is used as an input into Hauser-Feshbach calculations has

allowed more accurate calculations, including low-lying nuclear levels, separation

energies, level densities, and γ-ray strength functions.

The use of Hauser-Feshbach calculations is only considered appropriate at a high

density of excited states in the compound nucleus, as described in Ref. [121].

The Q value of the formation of the compound nucleus, 25Mg+d→27Al, is

17139.80(7) keV [122]. When summed with the centre-of-mass energy 7.41 MeV

(for a deuteron beam energy of 8 MeV), the compound nucleus is excited up to the

level of roughly 24 MeV. An estimation of level densities for several spin/parities

from Ref. [123], calculated using the configuration-interaction nuclear shell model,

indicates that at ∼24 MeV in 27Al, the energy level density is roughly 600 MeV−1.

The high level density at this excitation energy indicates that the use of the HF

method for calculating the compound contribution is appropriate.

As direct non-elastic processes remove flux from the compound reaction mech-

anism, the compound cross section calculated by HF methods (which do not

take in to account this loss of flux) will replicate the shape of the angular

distribution of a compound reaction, but not the magnitude of the yield of the

reaction. Thus, whenever HF calculations are fitted to experimental data, the

theoretical cross sections are scaled by a reduction factor, R. This can be treated

as a free parameter when fitting to experimental transfer reaction cross sections,

provided R does not exceed 1 [95]. The Hauser-Feshbach calculations fitted to

experimental data in this work (as shown in Chapter 4) all satisfy this limit. A

more comprehensive discussion of progress in HF calculations and the limitations

of statistical methods can be found in Ref. [124].

For (d, p) stripping reactions, the lower the beam energy used in a reaction, the

more likely the differential cross section angular distribution of an excited state

is to be dominated by a compound reaction mechanism, rather than a direct
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reaction mechanism.

The expected compound contribution for an excited state is also dependent on

the excitation energy of the state being populated. At higher excitation energies,

excited states have a greater number of states open below to decay to. As the

decay of a compound state is statistically more likely to populate an energy

region of high energy density, the decay is more likely to move to a state of

slightly lower energy than that of a significantly lower energy. The remainder of

the excitation energy will be released in the ejected particle, resulting in a higher

average energy of the particle being emitted. However, at these higher excited

states, more channels are available to the excited compound nucleus. This means

the probability of the state decaying via a single type of particle decay (e.g. purely

proton decay) is reduced, as the exit channel flux will be taken up by other decay

mechanisms.

2.4.2 Hauser-Feshbach calculations

To calculate the shape of the component of the experimental angular distributions

that may correspond to the compound reaction mechanism in the first experiment

presented in this thesis, the nuclear reaction program talys [125] was used.

Hauser-Feshbach calculations of differential cross sections of the formation of the

compound nucleus and subsequent emission of a proton at a range of angles were

performed.

The Hauser-Feshbach calculations performed included width fluctuation correla-

tions (WFC), which increase the size of the elastic channel and thus decreases

the size of other open channels. A comparison of several methods of calculating

WFC was performed in Ref. [126], which found the Moldauer method to be the

most accurate, and so this was used in the calculations in the current work.
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Chapter 3

Experimental Setup

3.1 Introduction and Overview of Facility

The two experiments described in this thesis were performed at the Triangle

Universities Nuclear Laboratory (TUNL) at Duke University, North Carolina,

U.S.A. This chapter describes the experimental set up used to collect the data in

both of these experiments.

The TUNL facility contains a 10-MV FN tandem Van de Graaff accelerator, a

recently re-commissioned Enge split-pole spectrograph and a detector system for

the purpose of performing high-resolution spectroscopy measurements (with the

possibility of γ-particle coincidence measurements) for reactions of interest to

nuclear astrophysics. The layout of the tandem lab is show in Figure 3.1.
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Figure 3.1 Model of the TUNL laboratory, showing the tandem accelerator,
analysing system and spectrograph [127].

3.2 Tandem Accelerator

The 10-MV FN tandem Van de Graaff accelerator at TUNL, shown in Figure 3.2,

is able to produce beams of charged particles, including 1H, 2H, 3He and 4He, in

either pulsed or DC form. The negatively charged ions from the ion source are

attracted towards the centre of the tandem accelerator, where a carbon foil strips

them of their electrons, before they are accelerated towards the high energy end

of the accelerator. Ions passing through the tandem accelerator gain an energy

(q + 1)V , where q is the charge of the particle being accelerated and V is the

terminal voltage of the accelerator. The tandem accelerator and beam stabiliser

are described in detail in Ref. [128]. After the tandem, two 90 ◦ magnets provide

high-resolution momentum analysis of the beam line. These two magnets share a

power supply, facilitating calibration of the beam energy. Both magnets contain

a nuclear magnetic resonance (NMR) probe, which controls and measures the

magnetic fields produced. The frequency of the NMR in MHz, f , is related to

the energy of the beam, E, by the following relation:

K =

(
ME

q2f 2

)[
1 +

E

(2Mc2)

]
, (3.1)

where

K ≡ the magnetic calibration constant

q ≡ the charge of the particle in the beam

M ≡ the mass of the particle in the beam in amu
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Figure 3.2 TUNL FN tandem Van de Graaff accelerator.

Mc2 ≡ the rest mass of the particle.

The original beam energy calibration was performed by fitting the proton energies

of various threshold and resonance reactions, which have had their Q values

measured previously, against the magnet calibration constant, K [129]. This

allows the beam energy to be derived from the NMR frequency, measured by the

gaussmeter, used in the two 90 ◦ magnets, within ±2 keV, using equation 3.1.

3.3 Spectrograph

The use of magnetic spectrographs to measure the energy of charged particles is a

method that has been used in nuclear physics research since the earliest studies of

radioactivity, and has remained popular in modern times. While various detectors

can determine the energy of particles, including ionisation chambers, scintillation

counters and solid-state counters, the magnetic spectrograph provides a low
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signal-to-background ratio with a very high resolving power, that in theory is not

limited. This contrasts with other detectors, for example, solid-state counters,

which have intrinsic limitations.

In a magnetic field of strength B, a charged particle with a velocity v and charge

q is subject to a force F, perpendicular to its velocity:

F = q(v ×B). (3.2)

Magnetic spectrographs utilise this force so that particles with the same charge

but different momenta (energies) will experience different turning radii in a

magnet (where the applied magnetic field is perpendicular to the motion of the

particles), focusing them on separate positions on a focal plane.

Thus, a magnetic field of constant field direction will move a charged particle of

momentum p in a circle of radius ρ, given by the following equation:

Bρ =
p

q
. (3.3)

The quantity Bρ is referred to as the magnetic rigidity. For particles of the same

charge, this equation shows how the momentum of a particle is proportional to its

magnetic rigidity. This results in charged particles of different momenta (and thus

energies) becoming spatially separated whenever they traverse the spectrograph.

Charged reaction products from experiments performed are then focused on to

the focal plane of a spectrograph, where their position and other properties can

be detected [130].

Enge Split-pole Spectrograph

Harald Enge first designed the Enge Split-pole Spectrograph while working for

High Voltage Engineering Corporation, in an effort to increase the solid angle

for spectroscopy experiments. An Enge split-pole spectrograph, like the one used

in this work, separates charged particles of different magnetic rigidities using

two magnets powered by the same coils, and thus with the same magnetic field

strength [131]. This allows higher precision spectroscopy via double focusing,

second-order aberration corrections and additional vertical focusing. The design
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Figure 3.3 Schematic of Enge split pole spectrograph, showing the two dipole
magnets focusing charged particles on to the focal plane [132].

of a split-pole spectrograph can be seen in Figure 3.3. The focal plane in the

TUNL Enge split-pole spectrograph is slightly curved and charged particles are

focussed on to this, lying at an angle of 41.5 ◦ to the magnetic exit.

3.4 Spectrograph Focal Plane Detector System

Charged particles were accepted by the high-resolution Enge split-pole spectro-

graph, with a magnetic field strength of 0.66 T used in the current work, before

being focussed on to the focal plane of the spectrograph, where their channel

positions are recorded by the position-sensitive detector system described in §3.4.2

and their energy loss and residual energy for the purpose of particle identification

were recorded by the detector system described in §3.4.3. The path of charged

particles through the TUNL detector is shown in Figure 3.4.
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Figure 3.4 Entire detector package used at the TUNL spectrograph. The
direction of particles leaving the spectrograph is indicated by the red
arrow, with the gas filled regions shown in yellow. The individual
gas-filled detectors are separated by aluminised mylar and filled with
gas isobutane at a pressure of 200 Torr [132].

3.4.1 Detection of charged particles by gas detectors and

scintillators

A variety of detectors are utilised in modern nuclear physics experiments,

including ionisation chambers, proportional counters, Geiger-Muller tubes and

scintillators. Each of these have their own advantages and disadvantages, and so

are chosen depending on the needs of the experimental set up.

The detection of any type of particle in a detector is based on how that particle

interacts with matter and loses its energy. In the case of the detection of

charged particles, e.g. protons, the Coulomb interaction results in energy loss

as the positively-charged particle passes through the material, depositing part

of its energy and possibly exciting or removing the negatively charged orbital

atomic electrons from their constituent atoms (ionisation). Charged particles

interact with many atomic electrons as they pass through the material, with each

individual reaction only removing a small proportion of the charged particle’s

total energy, giving the particle a nearly straight path through the material. The
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induced ionisation processes create many electron-ion pairs along its trajectory

through the detector, leaving a path of ionisation in the charged particle’s wake.

Gas-filled detectors, like the ones used in the particle positions and energy loss

measurements in the current work, are based around the principle of detecting this

ionisation, which is proportional to the energy of the incoming charged particle

[133].

Often too few ion-electron pairs are produced by a charged particle in a detector

for direct detection, and so proportional counter detectors amplify the original

charge produced using gas multiplication. This involves applying an electric field

to the detection gas with a high enough voltage to accelerate electrons liberated

from atomic orbitals to significant kinetic energies (positive and negative ions have

too large an inertia to participate significantly in this process). If the liberated

electron gains a high enough kinetic energy, it may in turn liberate another

atomic electron, which may cause further ionisation using the same mechanism.

This cascade of charge produced is known as a Townsend avalanche and greatly

increases the charge resulting from the interaction of a charged particle with a

gas detector, as can be seen in Figure 3.5. Once again, the size of the electrical

pulse produced will be proportional to the kinetic energy of the incoming charged

particle [133].

The detection of charged particles by scintillating materials is based on the

principle of charged particles exciting the bound electrons of the molecules that

comprise the scintillator, which then de-excite and emit light. This light is then

converted in to a usable electrical signal by a photomultiplier tube or a photo

diode [133]. This type of detector is used in the detection of the residual energy

of charged particles in the current work.
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Figure 3.5 Diagram of discrete avalanche counter events in a proportional
counter [134].

3.4.2 Position-Sensitive Detection System

The first and third detectors struck by particles accepted by the detector system

consisted of position-sensitive avalanche counters. This is shown in Figure 3.4,

with the two detectors measuring the positions of the incident particles on the

TUNL spectrograph.

At the entrance of each of these detectors, an etched cathode foil consists of several

electrically isolated strips. As a charged particle passes through the detector, it

ionises the fill gas, inducing an electron avalanche on the anode wire at the centre

of the counter. This in turn induces a positive charge on the cathode foils - the

etched cathode foil at the entrance of the detector and the ground foil at the exit

of the detector.

The strips in the etched cathode foil are connected together by a delay line,

increasing the time delay between strips that correspond to a certain detection

position. With the charge measured over multiple strips, a distribution of the

charge can be interpolated, as shown in Figure 3.6. This improves the charge

spatial resolution to sub-mm levels, instead of being limited by the strip width.

The grounded cathode foil on the exit of the position section helps isolate and

shape the electric field from the anodes. A cartoon of the position section and its

principle of operations can be found in Figure 3.6. In the current work, both the

forward and backwards position-sensitive detectors were biased with voltages of

+1800 V, with particles focussed on the centre of the front position system.
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Figure 3.6 Cartoon of one of the position-sensitive avalanche counters that
comprise the position-sensitive component of the focal-plane detector
system [132].

Although not used in the work described in this thesis, particle tracing is possible

with this detector system.

3.4.3 Particle Identification System

The second and fourth detectors are used for the identification of the types of

incident particles, and consist of a gas proportional counter, which measures the

energy loss of the particle (∆E), and a plastic scintillator which stops the particle

and measures its remaining energy (E), as shown in Figure 3.4.

This allows the identification of different species of particles leaving the spec-

trometer, as can be seen by the clear separation of different charged particles in

Figure 3.7.

Energy Loss (ΔE) Detector

A gas proportional counter comprises the ∆E section of the detector system.

The anode consists of a single wire, with the back cathode consisting of a strip

of aluminised mylar and the front cathode sharing the front position-sensitive

detector’s grounded cathode plane. This detector was biased with a voltage of
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Figure 3.7 Example ∆E− E plot showing ∆E against E for an experimental
run, with a beam energy of 8 MeV and charged particles measured at
a lab angle of 13 ◦. The counts at (100, 150) correspond to detected
protons, with the counts at higher values of ∆E produced by detected
deuterons and the counts near the origin originating from noise.
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+500 V in the current work.

Residual Energy (E) Detector

The residual energy of the particles is absorbed as they stop in this detector,

which is made of a Saint-Gobain BC-404 organic plastic scintillator. The fast

timing response of this material (with a rise time of 0.7 ns [135]) makes it ideal

for the trigger for the data acquisition system, and its dimensions have been

customised to cover the length of the detector, ensuring all light particles will

stop in the material. This detector is wrapped in thin, reflective aluminium foil

to maximise light collection while maintaining a sealing surface against the rest

of the detector system.

Bicron BCF-91A optical fibers of 1 mm diameter collect the light output from

eight grooves in the scintillator, and bend it into a photomultiplier tube (PMT),

which produces a measurable electrical voltage. The PMT used is a Hamamatsu

H6524, chosen as it has the highest quantum efficiency for the wavelengths of

interest, peaking at 27% [136].

A voltage of -1600 V was provided to this detector in the current work.

In the current work, the protons detected by the Enge spectrometer’s focal plane

were easily separated from background noise and other charged particles, i.e.,

deuterons, by selecting events at the appropriate position on the ∆E − E plot,

using JAM 1 [137], which can be seen in Figure 3.7.

3.4.4 Detector Readout and Electronics

This subsection describes the hardware and electronics used to collect the detector

signals in the current work. A schematic of the electronics for all four detectors

is shown in Figure 3.8.

1https://sourceforge.net/projects/jam-daq/
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Figure 3.8 A schematic of the electronics setup for readout from the focal plane
detectors used in the current work.
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In the position-sensitive detection system, 5 ns of delay is provided by each tap in

each delay chip, of model Data Delay Devices 150750A, with a 50 Ω impedance

to match the signal cables. The 10 taps in each of the 20 chips in the delay line

thus provide a total of 1 µs of delay. The signal cables are connected to the delay

lines with a vacuum type method by Bayonet Neill-Concelman feedthroughs,

attached to national pipe taper (NPT) threads. The relationship between the

delay time and position of the electrical charge can be non-linear, with non-

linearity in this conversion minimised by keeping a ratio of around 0.8 between

the cathode strip width (2.54 mm) and the separation of the anode and the

cathode (3.00 mm), as suggested in Ref. [138]. As each of the two position-

sensitive detectors has a readout on each side of high and low magnetic rigidity,

four position signals are generated whenever a charged particle passes through

the position-sensitive detection system, as can be seen in Figure 3.8, coming

from the gas avalanche counters. Each of these signals is preamplified through a

fast-timing preamplifier, before being shaped in an Ortec 863 quad timing filter

amplifier (TFA). The output levels of the TFA are roughly 300 mV, and so the

thresholds on each channel are matched to be just below this value. A constant

fraction discriminator (CFD) performs the final noise rejection and shaping on

the signal. An Ortec time-to-amplitude (TAC) converter is started by the signal

from the high magnetic rigidity end of the detector and ended by the signal from

the low magnetic rigidity end of the detector, which is subject to a 1 µs delay.

The output from the TAC is then recorded for later analysis by a CAEN V785

peak-sensing analog-to-digital converter (ADC).

The residual energy scintillator is connected to a PMT, which collects the light

from the scintillator and produces a dynode signal, providing separate timing and

energy signals. An Ortec 572A amplifier processes the energy signal, which is then

recorded. Each event count is generated by the timing signals passing through

a TFA and CFD, which shapes the pulse and rejects noise, which triggers the

master gate in the data acquisition (DAQ) system. A 10 µs gate is produced

and the ADC saves all coincident signals (providing the ADC buffer is not full

and thus will not veto the trigger). As can be seen in Figure 3.8, the low rigidity

signals from the position-sensitive detectors are subject to a signal delay, meaning

signals from this side of the focal plane will be recorded later than those from

the same location on the high-rigidity side of the focal plane. This means a gate

produced by the position section would induce some position-dependence on the

gate timing. However, the E detector is used to produce the gate, thus removing

the charged particle position dependency from the gate timing. The monitoring
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of beam currents and diagnosis of electronics problems is made easier by this set

up, with count rates recorded for all detector signals, gates generated, and gates

vetoed by an ADC busy signal.

An in-house charge-sensitive preamplifier based on the Cremat CR-110 opera-

tional amplifier preamplifies and provides a 1 µs shaping time to signals from the

∆E detector. Afterwards, an Ortec 572A amplifier shapes the signal, which is

then sent to the ADC.

3.5 Setup of experimental target for the present

experiments

The 25Mg(d, p)26Mg experimental campaign performed at TUNL in August 2018

consisted of two similar experiments measuring the angular distributions of

excited states of 26Mg of interest to astrophysically important reaction rates. Two

separate targets were used in these experiments consisting of two thin targets of
25Mg, isotopically enriched to a nominal value of 99.2±0.1 %, manufactured at

Argonne National Laboratory and transported to TUNL under vacuum. The two

targets had nominal thicknesses of 90 and 112 µg/cm2, supported on gold foils

of 165 and 170 µg/cm2 thicknesses respectively. These thicknesses were found by

measuring the energy loss of alpha particles passing through the targets, with an

estimated uncertainty of ±10 %.

Gold was chosen as the target support for several reasons. A support of carbon

would increase the number of counts from contaminant reactions on carbon

isotopes. This was an issue in previous measurements of the 25Mg(d, p)26Mg

reaction, where protons from the population of the key 0+ 6.125 MeV state of
26Mg arrived at a similar position on the focal plane to those produced in the
12C(d, p)13C(g.s.) reaction (see Refs. [139, 140]). Aluminium was also considered

as a backing, but due to the similarities in atomic masses and the Q values

of the 25Mg(d, p)26Mg (Q value=8868.51 keV [141]) and the 27Al(d, p)28Al (Q

value=5500.53 keV) reactions, a large overlap of protons from excited states was

expected, so this idea was discarded. In addition, the isotopic purity of gold

reduces the expected number of contaminant peaks from the target support.

The energy loss of particles through the target can contribute significantly to

the resolution capabilities of the experiment and so, by using thin targets, the

resolution of the experiment was maximised. The outgoing proton from the
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25Mg(d, p)26Mg reaction will lose energy less rapidly than the incoming deuteron,

due to its smaller mass and energy boost received from the positive Q value of

the reaction. With this in mind, the targets were orientated with the magnesium

side upstream of the beam, instead of the gold backing. This further minimised

the energy loss the system experienced, leading to the high resolution that can

be seen in Figure 3.9.

The main nominal impurities in the target consisted of other magnesium isotopes:

0.47 % 24Mg and 0.33 % 26Mg. The next abundant impurities were iron (800 ppm),

calcium (<100 ppm) and sodium (47 ppm). This isotopic analysis was performed

by Trace Sciences International and cosigned by Argonne National Laboratory,

the results of which can be found in Appendix A. While no impurities from

carbon, oxygen or hydrogen are mentioned in the analysis certificate, and the

amount of time each target was exposed to the atmosphere was minimised, the

spectra showed that the target became contaminated with an amount of these

organic chemicals as the experiment progressed, likely originating from sources

like oil pumps in the beam line and attaching to the target as it is heated.

For each run, the proton counts were binned as a function of channel number,

allowing the events corresponding to each excited state populated by the (d, p)

reaction to be observed. The background counts that could not be assigned to a

known excited state were very low.
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Figure 3.9 Energy spectrum of protons from the 25Mg(d, p)26Mg reaction,
measured at θ=30 ◦. Peaks corresponding to the excited states of
26Mg are labelled with their excitation energy in MeV, taken from
Ref. [81]. The final excited states of contaminant peaks are also
labelled.

3.5.1 Calculation of experimental cross sections

Experimental differential cross sections in the lab frame dσ
dΩ

were calculated as

follows:
dσ

dΩ
=

Y

Idn∆Ω(1− τ)
, (3.4)

where

Y ≡ yield of protons for that peak in a run

Id ≡ number of deuterons in a run

n ≡ number density of 25Mg in the target

∆Ω ≡ solid angle of acceptance of particles from target

τ ≡ fraction of deadtime in a run.

Charge from the beam was collected by a Faraday cup at a position of 0 ◦, which
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sent signals to a Brookhaven current integrator (BCI), set to give a logic pulse

every 10−10 C of charge deposited. Therefore, the number of deuterons in a run,

Id, was found as follows:

Id =
BCI

e
× 10−10, (3.5)

where e is the elementary charge in coulombs. A low voltage applied to the

Faraday cup suppressed the production of secondary charges, ensuring the beam

current was not overcounted.

The nominal target thickness in units of µg/cm2 is represented as ρ. To convert

the target thickness to a number density in units of cm−2, n, the following

equation was used:

n =
ρNA × 10−6

A
, (3.6)

where

NA ≡ Avogadro’s constant,

A ≡ mass number of nuclei in target (25 in these experiments).

The DAQ system recorded the time for each run (runtime) and the time spent

unable to take a new reading (busy), allowing the fractional dead time (typically

τ ≤ 0.01) to be calculated as:

τ = 1− busy

runtime
. (3.7)

The angles and differential cross sections were transformed from the lab frame to

the centre-of-mass frame using the method described in Appendix B.

3.5.2 Beamtime runs and condition monitoring

The first experiment described in this thesis aimed to measure the angular

distribution of states in 26Mg at excitation energies around 5.5-6.3 MeV,

corresponding to mirror states in 26Si of astrophysical interest, the results of

which are presented in Chapter 4. A beam of energy 8 MeV was used in this
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experiment. While previous studies of the 25Mg(d, p)26Mg reaction used a higher

beam energy (see Refs. [139, 140]), this beam energy was chosen to separate

protons from the 12C(d, p)13C(g.s.) reaction and protons corresponding to the

6.256 MeV 0+ state in 26Mg state. The 0+ 6.256 MeV state of interest is populated

by an `=2 angular momentum transfer in the (d, p) reaction, which peaks around

25-30 ◦, roughly around where the 0+ state overlaps with the peak corresponding

to protons from the 12C(d, p)13C reaction. Due to the Coulomb barrier between
25Mg and a deuteron being around 3.3 MeV, very low beam energies were also

not suitable for this experiment.

As a carbon nucleus is lighter than a magnesium nucleus, the carbon contaminant

peak will move to higher focal plane channel numbers at a faster rate as the

measured angle increases than a peak corresponding to an excited state of

magnesium will. This results in the 6.256 MeV state appearing at lower channel

numbers than the carbon peak at small angles, and at higher channel numbers

at larger angles.

The beam energy used is less than that typically employed in transfer studies for

nuclear astrophysics (∼5-10 MeV/u), and so increases that the likelihood of the

compound reaction mechanism being included in the reaction, in addition to the

direct reaction mechanism.

Measurements of the reaction products were taken at multiple lab angles between

13-55 ◦, with separations of typically 3 ◦ between measurements, providing good

coverage of the range where the DWBA calculation of the `=2 transfer that

populates the 0+ state could be well fitted.

An energy resolution across these angles of 13-14 keV FWHM was measured

from fitting a Gaussian distribution to the peaks, and no damage to the targets

appeared in the spectra.

The second experiment described in this thesis studied higher energy excited

states, above the alpha threshold in 26Mg, Sα=10.615 MeV, using a 13 MeV

beam to populate states. Across all angles, an energy resolution of 14-16 keV

FWHM was achieved.

Measurements were taken at lab angles ranging from 10-39 ◦. These angles were

chosen as these forward angles are the best described by DWBA calculations,

thus allowing discrimination between different `-transfers populating each state.

Measurements at angles smaller than 10 ◦ degrees were not possible due to issues

with vacuum seals at small angles and the high elastic scattering rate at these

angles. Beam time runs would typically last for an hour, to ensure a significant
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number of counts had been measured for the states of interest. The DAQ trigger

rate varied between ∼50-1000 Hz. The spectra were checked regularly during

runs, to ensure that significant peak counts were being recorded for each peak,

and online fitting of spectra allowed monitoring of peak profiles, ensuring there

was no broadening of the peaks, which would have indicated target damage.

During the runs, the dead time was kept under 1 %. Ongoing monitoring of the

rates allowed a balance to be found between keeping the count rate high enough to

get a large number of statistics while ensuring the deadtime did not get too high.

For the lower energy experiment, this was done by varying the beam current on

the target between ∼250-300 nA and opening the solid angle of acceptance of the

protons between 0.5 and 1.0 msr. For the higher energy measurement, the beam

current was varied between ∼150-270 nA, with a solid opening angle between 0.5

and 1.0 msr.
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Chapter 4

Study of states populated in the
25Mg(d, p)26Mg reaction for the
25Al(p, γ)26Si rate in nova burning

conditions

4.1 Astrophysical background and previous work

to constrain the 25Al(p, γ)26Si reaction rate

The study of the states of interest in 26Mg discussed in this chapter have been

reported in a peer-reviewed publication of which I was the principal author (see

Ref. [1]).

At the temperatures involved in novae, the 25Al(p, γ)26Si reaction proceeds

through resonances in 26Si corresponding to excited states just above the proton

threshold, Sp=5.51401(11) MeV [63]. Four excited states in 26Si in the relevant

Gamow window for the reaction have been observed, including states at 5.676,

5.890 and 5.929 MeV of spin/parities of 1+, 0+ and 3+ respectively, and a state

at 5.946 MeV with uncertain properties. Only the 3+ state has had its resonance

properties measured in the 26Si nucleus thus far, through measurements of the

proton and γ partial widths of the state.

The 1+, 0+ and 3+ states mentioned have had their mirror states identified in
26Mg at energies of 5.691, 6.256 and 6.125 MeV respectively, as seen in Figure
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4.1, which shows the current understanding of states of 26Mg matched to mirror

states of 26Si relevant for the 25Al(p, γ)26Si reaction in novae. The state in 26Mg

at 5.716 MeV has been matched to a mirror 4+ state in 26Si, but as this state lies

below the Gamow window at nova temperatures, it has no known astrophysical

significance. A γ-ray study from Ref. [142] measured a γ ray associated with

the decay of an excited state in 26Mg at 5.711 MeV to a lower-lying 0+ state,

in addition to γ rays corresponding to the neighbouring states at 5.691 and

5.716 MeV that have already been mentioned. Transition rules indicate that

the decay of the state at 5.711 MeV to a 0+ state would only be possible for a

state of J=(1, 2). No corresponding mirror state in 26Si has been confirmed for

this state thus far.

Studies of the resonance properties of these mirror states of interest in 26Mg have

either not been able to accurately separate the states of interest [139, 140], or

have extracted anomalously large spectroscopic factors [143], calling in to question

understanding of the reaction mechanisms involved.

The objective of the current experiment was to extract estimates for the proton

partial widths for states of 26Si of astrophysical interest. This was achieved by

fitting experimental angular distributions of the mirror states in 26Mg, populated

by the 25Mg(d, p) reaction, to theoretical angular distributions, extracting neutron

spectroscopic factors for each state. Under the assumption of isospin symmetry,

as described in §2.3.1, the neutron spectroscopic factors of states in 26Mg will

be equal to the proton spectroscopic factors for the corresponding mirror states

in 26Si. Knowledge of the proton spectroscopic factor of each state allows an

estimate to be made for the proton partial width of each state. The resonance

strengths of the resonances the 25Al(p, γ)26Si reaction proceeds through at nova

temperatures are strongly dependent on the proton partial widths of these

resonance states. Constraining these proton partial widths will reduce uncertainty

in the contribution of each resonance to the 25Al(p, γ)26Si reaction rate and thus

the amount of 26Al expected to be produced in classical novae.
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Figure 4.1 Excited states of 26Si above the proton threshold, matched with the
most likely mirror states in 26Mg. Excitation energies are in MeV,
taken from Ref. [81], with the Gamow window for the 25Al(p, γ)26Si
reaction at nova temperatures marked in orange.

4.2 Identification of excited states of 26Mg

populated using the 25Mg(d, p)26Mg reaction

at a beam energy of 8 MeV

The current experiment investigated states of 26Mg at excitation energies around

5.5–6.3 MeV, the region containing states that are mirror states to those of

astrophysical interest in the 25Al(p, γ)26Si in novae. Proton spectra were measured

at multiple lab angles in the range 13-55 ◦. The states of astrophysical interest

can be seen in Figures 4.2 and 4.3, at lab angles of 30 and 13 ◦ respectively. This

section shall focus on those states of astrophysical interest to the 25Al(p, γ)26Si

reaction rate.

The channel numbers and excitation energies of well-known, strongly populated

states of 26Mg were fitted with a second order polynomial fit, allowing the clear,

unambiguous identification of the states of astrophysical interest at 5.691, 6.125

and 6.256 MeV, with all other states observed agreeing within 5 keV of literature

energy levels [81].

The 3+ state was clearly observed across all angles as a very strong peak, as
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Figure 4.2 Energy spectrum of protons from the 25Mg(d, p)26Mg reaction,
zoomed in on the states of interest in this study, measured at θ=30 ◦.
Peaks corresponding to the excited states of 26Mg are labelled with
their excitation energy in MeV, taken from Ref. [81]. The final
excited states of contaminant peaks are also labelled.

expected from previous studies, consistent with its large spectroscopic factor.

The 0+ state was observed separated from other peaks at multiple angles, the first

time for a 25Mg(d, p)26Mg study. At lab angles 19 ◦ and less (as shown in Figure

4.3), protons from the state appeared at a lower rigidity than those corresponding

to the 12C(d, p)13C(g.s.) reaction, and at 27 ◦ and greater, they appeared at a

higher rigidity than the contaminant protons (as shown in Figure 4.2). Between

these two regions, the 0+ peak was obscured by the carbon peak and thus no

reliable cross sections could be measured.
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Figure 4.3 Energy spectrum of protons from the 25Mg(d, p)26Mg reaction,
zoomed in on the states of interest in this study, measured at θ=13 ◦.
Peaks corresponding to the excited states of 26Mg are labelled with
their excitation energy in MeV, taken from Ref. [81]. The final
excited states of contaminant peaks are also labelled.

The 1+ 5.691 MeV state was observed alongside the neighbouring peak at

5.71 MeV, while previous (d, p) studies were not able to distinguish the two

peaks. They were fitted well by a double Gaussian fit across all angles, as shown

in Figure 4.4. For clearly isolated peaks, the proton yield for each peak was found

by summing bin counts around that peak. Unresolved doublets (for example the

two peaks around 5.7 MeV and the 6.256 MeV state at angles where it merged

with the carbon peak) were fitted with a combination of two Gaussian functions

where the widths were fixed. Differential cross section angular distributions were

fitted with a combination of DWBA calculations of the direct reaction mechanism

for allowed angular momentum transfers and the compound nucleus mechanism,

with the magnitudes of both contributions allowed to vary freely.
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Figure 4.4 States around an excitation energy of 5.7 MeV, populated with the
25Mg(d, p)26Mg reaction, at a lab angle of 22 ◦, fitted with a double
Gaussian fit (red).

4.3 Angular distributions of states populated in

the 25Mg(d, p)26Mg reaction relevant to the
25Al(p, γ)26Si reaction in novae

This subsection presents the angular distributions of excited states of 26Mg

measured in this study and their fits to theoretical calculations, which were used

to extract spectroscopic factors for states of astrophysical interest in the current

work. The protons detected can be easily assumed to have a Poisson distribution,

giving a relative statistical uncertainty of 1/
√
N , where N is the number of counts

in the peak. The angular distributions presented in this thesis show simply the

statistical uncertainties in the differential cross sections, unless otherwise stated.

Experimental cross sections of excited states observed in this first experiment were

fitted to DWBA and HF theoretical angular distributions, as described in §2.3

and §2.3.2 respectively. To fit the two components of the angular distribution to

the experimental data, the direct and compound components are added together,

with their magnitudes allowed to vary freely, until a minimum in the chi-squared

value of the fit was found.
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Figure 4.5 Differential cross section measurements for the state at 6.125 MeV
state, populated using the 25Mg(d, p)26Mg reaction at a beam energy
of 8 MeV. This state is fitted by a linear combination of the `=0
(purple) and `=2 (orange) direct reaction components. Error bars
showing statistical uncertainties are included, but are too small to
see on the scale [1].

3+ state at 6.125 MeV

As can be seen in Figure 4.5, the angular distribution of the 3+ state measured

in the current work has a distinctive sharp decline in differential cross section

at forward angles, before flattening, and then declining sharply again at more

backwards angles. This distribution is fitted well by the `=0 + 2 combination

of `-transfers, and its shape is very similar to that seen in previous (d, p) studies

[139, 140], despite the difference in beam energies.

This contrasts with the angular distribution of the 2+ state at 5.292 MeV, which

is fitted well by a pure `=2 transfer, as shown in Figure 4.6. This is consistent

with previous measurements, which also found this state much more strongly

populated by an `=2 transfer [139, 140], despite angular-momentum conservation

rules allowing an `=0 transfer.

The extracted C2S(`=0) value of the 3+ state agrees very well with the previous

studies of Burlein et al. [139] and Arciszewski et al. [140], as shown in Table 4.1.

However, the extracted C2S(`=2) value is slightly larger than that of Burlein et

al. [139], and about half the size of that reported by Arciszewski et al. [140]. It is
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interesting that although these two previous studies had very similar experimental

set ups, including beam energies (12 and 13 MeV respectively), they extract

different `=2 values for the 3+ state. The (4He, 3He) study of Yasue et al. [143]

and the shell-model calculations of Richter et al. [86] reported `=0 and `=2

values that match well with the values we have extracted for this state.
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Figure 4.6 Differential cross section measurements for the state at 5.292 MeV,
populated using the 25Mg(d, p)26Mg reaction at a beam energy of
8 MeV. This state is well fitted with just an ` = 2 component (black
line). Error bars showing statistical uncertainties are included, but
are too small to see on the scale [1].

0+ state at 6.256 MeV

In Figure 4.7, the angular distribution of the 0+ state shows a single peak

around 30 ◦, indicative of an `=2 transfer. However, the peak is flatter than the

DWBA calculation predicts. A linear combination of the direct and compound

components fits the experimental data points well, as shown in Figure 4.8,

allowing the extraction of a value for the spectroscopic factor.

The C2S(`=2) value of 0.042(10) extracted matches well with that measured in

the (4He, 3He) study of Yasue et al. [143] and shell-model calculations [86], as

shown in Table 4.1 and stands as the first (d, p) study to extract a spectroscopic

factor for this state.
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Figure 4.7 Differential cross section measurements for the state at 6.256 MeV,
populated using the 25Mg(d, p)26Mg reaction at a beam energy of
8 MeV. The peak of the angular distribution is flatter than the
DWBA calculations alone (orange and black) suggest.
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Figure 4.8 Differential cross section measurements for the state at 6.256 MeV,
populated using the 25Mg(d, p)26Mg reaction at a beam energy of
8 MeV. This angular distribution is fitted well by a combination
of the direct `=2 component (orange) and the compound nuclear
component (dashed blue) [1].

71



1+ state at 5.691 MeV
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Figure 4.9 Differential cross section measurements for the state at 6.256 MeV,
populated using the 25Mg(d, p)26Mg reaction at a beam energy of
8 MeV. This state is best fitted solely by the compound mechanism
(dotted blue), while the direct component implied by the (4He, 3He)
measurement of Yasue et al. [143] is shown in dashed black [1].

A measurement by Yasue et al. of the neutron spectroscopic factor of the 1+ state,

using a 25Mg(4He, 3He)26Mg reaction, extracted a spectroscopic factor of C2S=0.2

[143]. This is roughly 50 times larger than the spectroscopic factors predicted

by shell-model calculations, including C2S=0.0035 [86], C2S=0.0040 [144] and

C2S=0.0048 [87]. As stated in the paper describing the 25Mg(4He, 3He)26Mg

reaction, the measured spectroscopic factor may have been enhanced by the

contribution from multistep reaction processes to the 1+ state, or possibly from

difficulty in resolving the 1+ state from the neighbouring 4+ state. Previous (d, p)

studies failed to resolve the two peaks [139, 140].

The differential cross section angular distribution that can be seen in Figure

4.9 appears to have a flat shape, with no features that are indicative of a

direct reaction mechanism. The data are best fitted by the compound reaction

mechanism alone, with no contribution from a direct reaction mechanism. By

keeping the magnitude of the compound component constant and varying the

direct reaction mechanism component, an upper limit on the direct reaction

mechanism at the 1σ level was found, allowing a calculation of an upper limit on
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the spectroscopic factor.

As shown in Table 4.1, this upper limit of C2S < 5.7 × 10−3 is consistent with

the shell-model calculation of 3.5 × 10−3 [86], but is roughly 40 times smaller

than the spectroscopic factor extracted from the (4He, 3He) study of Yasue et

al. [143]. As discussed here and in the publication of Yasue et al. itself, this

discrepancy is likely due to an increased yield from multistep processes through

lower energy 2+ states in 26Mg. Thus, the work described in this thesis stands as

the first experiment to constrain the spectroscopic factor of the 1+ state through

a reliable, well-understood reaction mechanism.

Summary of spectroscopic factors of astrophysically relevant states

Table 4.1 presents the spectroscopic factors for states of 26Mg of astrophysical

interest measured in the current experiment. Comparisons are made to the

previous (d, p) studies of Burlein et al. [139] and Arciszewski et al. [140], the

(4He, 3He) study of Yasue et al. [143] and the shell-model calculations performed

with the USDB Hamiltonian by Richter et al. [86].

From a consideration of different sources of potential parameters, including

Refs. [105, 106], the uncertainty in the extracted spectroscopic factor from the

choice in potential parameters was found to be ∼20%, similar to other analyses

with DWBA calculations. The calculation of uncertainties for the spectroscopic

factors in this experiment was done by adding the uncertainty in the fit (which was

dependent on the statistical uncertainties associated with every cross section), the

target thickness uncertainty, and the DWBA potential parameters in quadrature.

Table 4.1 Neutron spectroscopic factors from previous neutron transfer studies
and the current work, for states in 26Mg with mirror states of
relevance to the 25Al(p, γ)26Si reaction in novae. Spectroscopic
factors for the mirror states in 26Si, from sd-shell model calculations,
are also shown for comparison.

C2Sexp C2Sth

Ex [MeV] [81] Jπ ` (d, p) [139] (d, p) [140] (4He, 3He) [143] Current Work sd-shell [86]

5.69108(19) 1+ 2 0.20(4) <5.7× 10−3 a 3.5× 10−3

6.12547(5) 3+ 0, 2 0.121, 0.206 b 0.106(13), 0.60(14) 0.14(3), 0.30(6) 0.11(2), 0.27(6) 0.14, 0.33

6.25547(5) 0+ 2 0.054(11) 0.042(10) 0.039

a Upper limit at 1σ confidence level.
b No uncertainties were provided in this reference.
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Peak at 5.71 MeV

In addition to the previously mentioned 1+ state at 5.69 MeV, the (4He, 3He)

study of Yasue et al. [143] identified a neighbouring peak at 5.71 MeV. The

angular distribution of this peak was fitted solely with an `=2 transfer, with a

spectroscopic factor of C2S=0.030 extracted. This is consistent with a known 4+

state at 5.716 MeV in 26Mg populating the peak. The corresponding 4+ mirror

state in 26Si has an excitation energy of 5.518 MeV, below the Gamow window

of the 25Al(p, γ) reaction at nova temperatures, meaning it is not astrophysically

important. A peak at 5.71 MeV was also identified in the current work, with

a differential cross section angular distribution that is described well by a

combination of an `=2 transfer and a compound contribution, as can be seen

in Figure 4.10. This is also consistent with a 4+ state populating the peak and

resulted in a spectroscopic factor of C2S(`=2)=0.030(7) being extracted.
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Figure 4.10 Angular distribution of the peak at 5.71 MeV, fitted by the
`=2 direct reaction mechanism (orange) and compound reaction
mechanism (red). Error bars showing statistical uncertainties are
included, but are too small to see on the scale.

However, the study of Bhattacharjee et al. [142], in addition to the previously

discussed 1+ state at 5.691 MeV [145, 146] and the 4+ state at 5.716 MeV

[147, 148], observed γ rays associated with a state at 5.711 MeV decaying to a 0+
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Figure 4.11 Angular distribution of the peak at 5.71 MeV, fitted by direct
mechanisms. The blue, orange and green angular distributions
represent the `=1, 2 and 3 `-transfers respectively. Error bars
showing statistical uncertainties are included, but are too small to
see on the scale.

state. As only E1, E2 and M1 transitions would be strong enough to have been

observed, the possible spin/parities of the 5.711 MeV state must be restricted to

1+, 2+ or 1−. The (d, p) studies of Arciszewski et al. [140] and Burlein et al. [139]

did not resolve the peaks at 5.69 and 5.71 MeV that were observed in the current

work, observing only a single peak. In addition to an `=2 transfer, both (d, p)

studies found evidence for an `=3 transfer, implying the existence of a negative

parity state in this region. Combining the results of these studies implies the

existence of a 1− state at 5.711 MeV in 26Mg.

The prospect of such a negative parity peak being present in this region was

investigated in the current work by considering the peak at 5.71 MeV to contain

contributions from a positive parity (4+) state at 5.716 MeV and a negative

parity state at 5.711 MeV. The angular distribution of the peak was fitted

well by a combination of `=1, 2 and 3 `-transfers, as can be seen in Figure

4.11. As parity is conserved by the strong force, which facilitates nuclear

reactions, negative parity states are exclusively populated by odd `-transfers in

the 25Mg(d, p)26Mg reaction studied in this work. Thus, the angular distribution

observed for this excited state is consistent with the existence of a negative

parity state in this region. Assuming no compound mechanism contribution and
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positive and negative parity states in the 5.71 MeV peak, spectroscopic factors of

C2S(`=1)=0.009(2) and C2S(`=3)=0.25(6) (with the C2S(`=2) value unchanged

at 0.030(7)) were extracted.

While no spectroscopic factors of odd `-transfers are provided in the previous

(d, p) studies [139, 140] to directly compare to, the fits of the angular distributions

imply a large `=3 spectroscopic factor, consistent with that extracted in the

current work. However, both studies did not include any `=1 component in

the fitting of their angular distributions, while the current work has one that

contributes noticeably to the shape of the angular distribution. The extracted

`=2 spectroscopic factor for the 4+ state of C2S=0.030(7) agrees well with that

from the study of Yasue et al. [143] (C2S=0.030) and shell-model calculations

[86] (C2S=0.036). However, it is smaller than those reported by Arciszewski et

al. [140] (C2S=0.139) and Burlein et al. [139] (C2S=0.062). The tables of results

in both (d, p) studies seem to imply, for the extraction of spectroscopic factors,

the peak was only fitted using an `=2 transfer, resulting in a larger spectroscopic

factor than would have been extracted given the inclusion of other `-transfers.

To summarise, the investigation performed in the current work cannot conclude

on the existence of a negative parity state at 5.71 MeV in 26Mg, but the results

are broadly consistent with such a state. As no definite mirror state in 26Si has

been identified for the state at 5.711 MeV in 26Mg, it was not included in the
25Al(p, γ)26Si reaction rate calculations performed in the next section.

4.4 Calculation of the 25Al(p, γ)26Si reaction rate

at nova temperatures

4.4.1 Previous work constraining resonance properties of

resonance states in 26Si relevant to the 25Al(p, γ)26Si

reaction

As mentioned previously, four states in 26Si have been observed in the excitation

energy range that corresponds to nova burning temperatures for the 25Al(p, γ)26Si

reaction. These are at excitation energies of 5.676 (1+), 5.890 (0+), 5.929 (3+)

and 5.946 MeV (spin/parity uncertain). Only the 3+ state at 5.929 MeV has had

its partial widths constrained in 26Si so far, while estimations of the strengths of
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1+ and 0+ resonances have relied on shell-model calculations and mirror nuclei

studies to constrain their resonance parameters. A summary of knowledge of the

states in the Gamow window at nova temperatures is presented below.

The state at 5.676 MeV has had its spin/parity firmly established as 1+ by the

γ-ray study of Seweryniak et al. [149]. Shell-model calculations indicate that the

proton partial width is much smaller than the Gamow partial width, meaning the

resonance strength is very dependent on the proton partial width of the state.

The state at 5.890 MeV has been firmly established as having a spin/parity of

0+. This state was observed by de Séréville et al. [150] through the detection of

neutrons and γ rays from the 24Mg(3He,nγ) reaction. The 24Mg(3He,nγ) studies

of Komatsubara et al. [151] and Doherty et al. [152] measured the angular

distributions of γ-γ angular correlations, providing a firm assignment to the state

of Jπ=0+.

The state in 26Si at 5.929 MeV has had its spin/parity well established to be 3+,

through studies of the 28Si(p, t)26Si reaction [153, 154] and the β-decay of 26P to

this state [155, 156].

A measurement of the proton decay in the 25Al(d,n)26Si*(p) reaction allowed

the proton partial width of this state to be estimated to be Γp=2.9(1.0) eV

[157]. However, this study does not give a value for the measured spectroscopic

factor of the state, merely describing it as a ‘large spectroscopic factor’. The

low counts from the experiment, the inability to separate the contributions from

the 3+ and 0+ resonances and the possibility of an `=2 contribution from the

state all contribute to the uncertainty of this result. This measurement of the

proton partial width was combined with the intensity of the proton decay from

Ref. [155] and measurement of the γ-decay intensity of the state to achieve

Γγ=4.0± 1.1(stat.)+1.9
−1.8(lit.)× 10−2 eV by Bennett et al. [156], using the relation

Ip/Iγ=Γp/Γγ. A recent coincidence measurement of the proton and γ-decay of

the state by Liang et al. [158] using the same relation gave a concordant γ partial

width of 6.04+3.00
−2.76 × 10−2 eV.

Initially the level at 5.946 MeV was assigned spin/parity 0+ by Parpottas et al.

(2004) [159], using the 24Mg(3He,n)26Si reaction. However, this assignment was
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based on comparisons to HF calculations, which are only considered reliable at

excitation energies of sufficiently high energy level densities and with a purely

compound reaction mechanism. As studies at similar beam energies and excita-

tion energies [160–162] show significant direct components, the appropriateness

of HF calculations in the study of Parpottas et al. seems doubtful, casting

significant uncertainty on this spin/parity assignment. Furthermore, a (3He, 6He)

study by Caggiano et al. (2002) [163] saw an energy level at 5.945(8) MeV, but

stated that it could not be a 0+ state, due to other 0+ states having a weaker

population, assigning a spin/parity of 3+ to this state. However this was prior

to the state at 5.929 MeV being firmly assigned Jπ=3+ [153–156, 158]. As shell-

model calculations do not predict more than one 0+ or 3+ state around this

excitation energy, and no unmatched 0+ or 3+ mirror candidates in 26Mg exist in

this region, neither a 0+ nor a 3+ assignment can be considered satisfying for the

state at 5.946 MeV.

The existence of a negative parity state at 5.711 MeV in 26Mg, as discussed in

the previous section, would imply the existence of a matching negative parity

state in 26Si, but no state currently appears to be a definite candidate for this

assignment. The NNDC compilation does not describe any negative parity states

around an excitation energy of ∼5–6 MeV in 26Si, with the lowest lying negative

parity state described in the compilation a 3− state at 6.787(4) MeV, matched

well to the 3− state in 26Mg at 6.876 MeV [81]. The state in 26Si at 5.946 MeV

(which has had previously conflicting spin/parity assignments), a state observed

at 6.101 MeV with no current spin/parity assignment, or a negative parity state

in 26Si that has yet to be observed could all possibly be the mirror state of the

state at 5.711 MeV in 26Mg. If this mirror state lies within the Gamow window of

the 25Al(p, γ)26Si reaction at nova temperatures (as a state at 5.946 MeV would),

it could have a significant effect on the reaction rate through an `=1 resonance.

Due to the uncertain nature of this state’s properties, it has not been included in

the reaction rate calculations presented here.

78



4.4.2 Extraction of proton partial widths for states of 26Si of

astrophysical interest from the current work

Under the assumption of isospin symmetry, as described in §2.3.1, the structure

of the mirror nucleus is able to provide nuclear structure information, with the

spectroscopic factor of a mirror state allowing the size of the partial width in an

unstable nucleus to be estimated.

In Ref. [86], shell-model calculations using the USDB Hamiltonian are used to

calculate C2S and Γp values for states in 26Si. The proton partial width of a

state, calculated as Γp = C2SΓsp, scales linearly with both Γsp (the single-particle

width of that state) and the spectroscopic factor of that state. Refs. [92] and [164]

compare neutron and proton spectroscopic factors for pairs of light mirror nuclei

and find a maximum deviation of ∼25%, with the differences for most pairs

≤15%, indicating the typical uncertainties expected for the spectroscopic factors

of mirror nuclear states.

In the current work, under the assumption of isospin symmetry, experimental

proton partial widths were extracted by multiplying the theoretical partial widths

by the ratio of the experimental 26Mg neutron spectroscopic factor and the

theoretical 26Si proton spectroscopic factor for each state. This allowed proton

widths for the 3+ and 0+ mirror states in 26Si to be calculated and an upper limit

to be extracted for the 1+ state, shown in Table 4.2.

For the astrophysically relevant 0+ state in 26Si, Ref. [86] took the state to

be at 5.946 MeV, however, all recent studies have shown the 0+ state to be

at 5.890 MeV [150–152, 165]. The single-particle width is calculated as Γsp =

2γ2P (`, Rc), where P (`, Rc) is the penetrability factor for that state. Using the

CRIB Penetrability/Wigner limit calculator [166], written by Dr. Yamaguchi

Hidetoshi, using theory described in Ref. [167], the ratio of P (`, Rc) between 5.890

and 5.946 MeV was found to be 0.2409(16) (with the uncertainty originating in

the difference in the choice of nuclear radius). The single particle width of the

0+ state of interest from Ref. [86] was scaled by this value in the calculation of

the proton partial width for this state.

The proton partial width of Γp∼2.6 eV calculated for the 3+ state is in agreement

with the value of 2.9(10) eV measured by Peplowski et al. [157] through the
25Al(d,n)26Si*(p) reaction, as shown in Table 4.2. The measurement of similar

proton partial widths for mirror states is significant and gives substantial validity

79



Table 4.2 Proton partial widths extracted for states contributing to the
25Al(p, γ)26Si reaction using the 25Mg(d, p)26Mg reaction compared
to previous literature measurements.

Γp [eV]

Ex(26Si) [MeV] [81] Er [MeV] [81] Jπ Current work Literature sd-shell calculations [86]

5.6762(3) 0.1622(3) 1+ <1.0× 10−8 – 6.3× 10−9

5.8901(3) 0.3761(3) 0+ 4.2× 10−3 – 3.9× 10−3

5.9294(8) 0.4154(8) 3+ 2.6 2.9(1.0) a 3.5
a [157].

to the method employed in this work and the assumption of isospin symmetry.

A proton partial width of 4.2×10−3 eV for the 0+ resonance in 26Si was calculated,

consistent with the proton partial width implied by the shell-model calculations

of Ref. [86] (once the change in the penetrability factor due to the new excitation

energy has been taken in to account). This is roughly half of the shell-model

calculation of the γ partial width, 8.8×10−3 eV [86], indicating that the resonance

strength is mainly dependent on Γp. Between the confirmation of the excitation

energy of the 0+ state by multiple studies and the measurement of the proton

partial width by this study, the uncertainty in the contribution of this resonance

to the 25Al(p, γ) reaction has been reduced significantly.

An upper limit of the proton partial width for the 1+ state was determined

to be <1.0×10−8 eV, much smaller than the γ partial width from shell-model

calculations of 0.12 eV. This indicates that this resonance strength is almost

completely determined by Γp, and therefore this study goes a significant way

in reducing the uncertainty in the contribution of the 1+ resonance to the
25Al(p, γ)26Si reaction rate.

4.4.3 25Al(p, γ)26Si Reaction Rate Calculations

To calculate rates for the 25Al(p, γ)26Si reaction at nova temperatures, contri-

butions from both the resonant and non-resonant components were calculated,

using the formalisations set out in §2.2.

For the non-resonant capture component, a total S-factor of 28 keV-b was

used, taken from Ref. [87], where S-factor values for individual states were

calculated using the USDA interaction. Parameters used to calculate the

resonance components of the reaction rate are given in Table 4.3. As the proton
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and γ partial widths of the 3+ state have been measured directly in the 26Si

nucleus, in Refs. [157] and [156], they were chosen to be used in the calculations

(Ref. [156] has a smaller uncertainty than that quoted in Ref. [158]). shell-model

calculations of the γ partial widths for the 0+ and 1+ states from Ref. [86] were

used, as no measurement (direct or indirect) has been possible so far. No direct

measurements for the proton partial widths of the 0+ and 1+ resonance exist,

and as this work provides the first reliable experimental value for the 0+ state

and first reliable upper limit for the 1+ state, they were used in the reaction rate

calculations.

Figures 4.12 and 4.13 show the calculated reaction rate across relevant nova

temperatures, first as an absolute reaction rate, then with each resonance

component normalised to the total reaction rate.

Table 4.3 Parameters of resonances in the 25Al(p, γ)26Si reaction used to
calculate the reaction rate shown in Figure 4.12. A proton separation
energy of Sp=5.51401(11) MeV [63] has been used to calculate the
resonance energies.

Ex [MeV] [81] Er [MeV][81] Jπ Γp [eV] Γγ [eV] ωγ [eV]

5.6762(3) 0.1622(3) 1+ <1.0× 10−8 0.12 a <2.56× 10−9

5.8901(3) 0.3761(3) 0+ 4.2× 10−3 8.8× 10−3 a 2.35× 10−4

5.9294(8) 0.4154(8) 3+ 2.9 b 0.040 c 2.30× 10−2

a [86].
b [157].
c [156].
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Figure 4.12 25Al(p, γ)26Si rate calculated using the parameters in Table 4.3.
The downward-pointing arrows indicate an upper limit from the
1+ contribution. The dashed red line indicates the contribution
that would be implied by the spectroscopic factor measured in the
(4He, 3He) study by Yasue et al. [143].

As can be seen, the contribution from the direct capture mechanism is orders of

magnitude smaller than the total reaction rate across all temperatures, and thus

can be considered negligible to the reaction rate. At lower temperatures, below

∼0.2 GK, the 1+ resonance dominates the reaction rate. At temperatures above

∼0.2 GK, the `=0 resonance capture on the 3+ state dominates the reaction

rate. The 0+ resonance contributes .10% to the reaction rate at these higher

temperatures.

An investigation in to the role of the 1+ resonance in the 25Al(p, γ)26Si reaction by

Parikh and José [61] showed that, even with the larger resonance strength implied

by Yasue et al. [143], the 25Al half-life by proton capture in nova environments

(roughly 200 s) is still significantly longer than the β-decay half-life of 25Al

(t1/2=7.2 s [168]). In addition, they showed that the difference in 26Al yield from

models, using the higher Yasue or lower shell-model spectroscopic factor, was less

than 5%. The greatly reduced experimental spectroscopic factor reported in this

work emphasises their conclusion that the 1+ resonance has very little relevance
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Figure 4.13 Reaction rates of the three resonances in the 25Al(p, γ)26Si
reaction, normalised to the total reaction rate, using the resonance
parameters given in Table 4.3.

for the determination of the amount of 26Al produced in novae.

This work indicates that the 0+ resonance has a small effect on the production of
26Al in novae, and stands as the first study to extract a reliable pure spectroscopic

factor from the state, thus extracting a proton partial width that can be used

with confidence.

4.4.4 Comparison of the 25Al(p, γ)26Si reaction rate to

previous work

Figure 4.14 compares the recommended 25Al(p, γ)26Si reaction rate calculated

in the current work and the rate calculated in the Monte Carlo uncertainty

analysis of Iliadis et al. [169]. It can be seen that the predicted reaction rate

is less than that predicted in the study of Iliadis et al. [169], mainly due to

the measurement of the 3+ resonance proton partial width being smaller than

the shell-model calculation of Iliadis et al. [169]. With the constraints placed

on the 1+ and 0+ resonances in this study, and the reaffirmation of the size

of the 3+ proton partial width, this lower reaction rate has been established
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(blue) to the Monte Carlo uncertainty study of Iliadis et al. [169].
The “low rate” and “high rate” from Iliadis et al. are indicated by
the shaded areas. Arrows indicate the temperatures at which the
reaction rate ratio should be considered an upper limit due to the
1+ resonance dominating the reaction rate.

with greater certainty. A lower 25Al(p, γ)26Si reaction rate implies less 25Al will

follow the 25Al(p, γ)26Si(β+ν)26Alm reaction pathway and will instead follow the
25Al(β+ν)25Mg(p, γ)26Alg pathway, leading to more 26Alg production and novae

being a more significant source of 26Al in our Galaxy.
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Chapter 5

Study of states populated in the
25Mg(d, p)26Mg reaction relevant

to 22Ne + α reactions in the weak

s-process

5.1 Astrophysical background and properties of

interest in states of 26Mg above the alpha

threshold

The second experiment presented in this thesis measured the angular distributions

of states in 26Mg above the alpha threshold (Sα=10.6148 MeV) using the
25Mg(d, p) reaction. In the weak s-process, the two reactions that determine

the neutron budget are the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reactions, which

both proceed through natural-parity states of 26Mg above the alpha and neutron

(Sn=11.0931 MeV) thresholds respectively.

Direct measurements of these reactions are very experimentally challenging

and have only allowed measurements of resonance strengths of states down

to an excitation energy of 11.3195 MeV (Er=704.7 keV) [170]. Therefore,

measurements of the properties of these states of 26Mg corresponding to lower-

energy resonances through indirect reactions are required to constrain the

strengths of resonances these reactions proceed through.
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For states just above the alpha threshold, the alpha partial width is much

smaller than the neutron or γ width, meaning the alpha partial width dominates

the resonance strengths contributing to the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg

reaction rates. Extraction of values for these alpha partial widths has been

performed using alpha-transfer reactions, as shown in Refs. [171–173], which

all used the 22Ne(6Li, d)26Mg reaction to populate natural parity states of 26Mg

with large alpha widths. Recent alpha-transfer studies, measured at energies

both above [174] and below [116] the Coulomb barrier threshold (∼6 MeV),

provided further values and upper limits for alpha partial widths across the 22Ne

+ α Gamow window at massive star temperatures. However, the extraction of

accurate values of alpha partial widths from these experiments is dependent on

knowledge of the spin/parity of the states observed.

Previous indirect studies that have also measured properties of these states

have included: proton and deuteron scattering experiments to accurately

measure excitation energies of states [175], a γ-decay heavy-ion experiment to

constrain the properties of high-spin states [176], a photoexcitation experiment

to unambiguously constrain the spin/parities and energies of states [177], alpha-

scattering experiments to constrain the spin/parities of natural-parity low-spin

states [173, 178], and neutron capture experiments that provided information

on the energy, spin/parity, and n/γ partial widths of states above the neutron

threshold through an R-matrix analysis [179, 180].

In the 25Mg(d, p) reaction discussed in this chapter, the shapes of the angular

distributions measured are sensitive to the orbital angular momentum transfers

that populate the final states. As a state of a certain Jπ can only be populated

by certain `-transfers, the shape of angular distributions can constrain the

possible Jπ values for a certain state. Thus, by fitting weakly-bound DWBA

calculations, described in §2.3, to differential cross section angular distributions

measured in the current work, the `-transfers that populate these states can be

found, constraining the spin/parities of those states. This means the values of

alpha partial widths extracted from alpha-transfer experiments [116, 174] can

be constrained, reducing the uncertainty in the resonance strengths involved in

the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reactions. In addition, information on

spin/parity can also provide guidance on whether the state has natural parity,

and thus will contribute to the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reactions. The

constraints that can be placed on these states will be discussed in this chapter,

with an emphasis on states astrophysically relevant to the 22Ne + α reactions at
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temperatures experienced in massive stars.

5.2 Excited states of 26Mg above the alpha

threshold observed in the 25Mg(d, p)26Mg

reaction

The spectra obtained in this study (shown later in Figures 5.3, 5.4, 5.5 and

5.6) were calibrated using a polynomial fit of magnetic rigidity (Bρ) to channel

number for selected excited states of 26Mg that had been observed in previous

studies and appeared as well-defined peaks in the current work. Table 5.1 shows

the excitation energies used in the calibration of the spectrometer, chosen as

they were precisely measured in previous studies, well populated in the current

study (with minimal overlap with other states), and covered the region of the

spectrometer of astrophysical interest well. A least-squares fit using a second

order polynomial was chosen for this calibration due to the lowest reduced chi-

squared value of its fit compared to other polynomials.

Table 5.1 Excitation energies of energy levels used in the energy calibration,
with sources of the excitation energy values in footnotes.

Ex [MeV] ΔEx [MeV]
10.6001 a 0.0004
10.6819 a 0.0003
10.719 b 0.002
10.928 b 0.001
10.978 c 0.003
10.998 b 0.001
11.047 b 0.001

11.11223 d 0.00041
11.15338 d 0.00041
11.24286 d 0.00041
a Basunia et al. (2016) [81].
b Adsley et al. (2018) [175].
c Moss et al. (1976) [181].
d Massimi et al. (2017)

[180].

The fit of the calibration of Bρ to channel number is shown in Figure 5.1, with

the residuals of the fit shown in Figure 5.2. The uncertainties are calculated as a

quadrature sum of uncertainty in the literature value and the fit uncertainty.
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Figure 5.1 Magnetic rigidity against channel number for known states of 26Mg
at a lab angle of 10 ◦. Excited states used in the fit and their
uncertainties are given in Table 5.1.
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Figure 5.2 Magnetic rigidity residuals against channel number for known states
of 26Mg at lab angle of 10 ◦. Excited states used in the fit and their
uncertainties are given in Table 5.1.
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As can be seen in Figure 5.2, the chosen polynomial fits the data well. The

overlap of the residuals with zero does indicate that the uncertainties may be

slightly over-estimated, with the uncertainties in magnetic rigidity coming from

literature values of excitation energies of 26Mg and the Q-value of the 25Mg(d, p)

reaction. Spectra are shown in Figures 5.3, 5.4, 5.5 and 5.6, with states observed

in the current experiment labelled and fitted with Voigt functions (the widths of

states near and above the neutron threshold may have the intrinsic width of the

state contributing to the observed peak width, in addition to the experimental

resolution). The Voigt function is defined as a convolution of a Gaussian function

and a three-parameter Lorentz (Breit-Wigner/Cauchy) function. The Gaussian

function is defined as:

G(x) =
A

σ
√

2π
exp−1

2

(
x− µ
σ

)2

, (5.1)

where

A ≡scaling factor of function

σ ≡standard deviation of function

µ ≡mean of the function.

The three-parameter Lorentz function is defined as:

L(x) = I

[
γ2

(x− x0)2 + γ2

]
, (5.2)

where

I ≡height of peak

γ ≡scale parameter for width of peak

x0 ≡location of centre of peak.

Table 5.2 shows the states observed in the current experiment, alongside those

observed in previous studies. Literature levels are taken from a range of studies,

with the study reporting the smallest excitation energy uncertainty for a state

being presented in the table.

In this experiment, all peaks measured could be matched to at least one state

in 26Mg described in a previous study, indicating no new states were observed

in the current experiment. While the (d, p) reaction is most sensitive to states

with large neutron spectroscopic factors, and cannot populate very high-spin

states, this lack of discovery of new states suggests that our current knowledge
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of the energies of the states just above the alpha threshold in 26Mg is now fairly

comprehensive. This indicates that our understanding of which states drive the
22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reactions that determine the neutron budget

in the weak s-process is approaching being well established.

Late on in the writing of this thesis, a paper was published describing the

measurement of the 25Mg(d, p)26Mg reaction using a deuteron beam of energy

56 MeV [182]. However, this work had a different emphasis to that described in

this thesis, and investigated whether the (d, p) reaction is an appropriate surrogate

reaction to neutron capture reactions on 25Mg, with a poorer experimental

resolution than that in the current work.
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Ex (current) [MeV] Ex (lit) [MeV] Ref. Reaction mechanism(s)

10.600(2) 10.6001(4) * [81] (α, pγ), (n, γ), (p, p ′)

10.648(2)

{
10.6473(8) [177] (γ, γ̄)

10.650(1) 1 [175] (p, p ′)

10.6507(4) 2 [176] heavy-ion fusion/γ decay

10.682(2) 10.6819(3) * [183] (n, γ)

10.6963(4) [176] heavy-ion fusion/γ decay

10.704(2) [176] heavy-ion fusion/γ decay

10.706(1) [175] (p, p ′)

10.717(2) 10.719(2) * [175] (p, p ′), (d, d ′)

10.730(2) [175] (p, p ′), (d, d ′)

10.743(2)

{
10.742(3) [176] heavy-ion fusion/γ decay

10.74598(12) [183] (n, γ)

10.766(2)

{
10.767(2) [81] (p, p ′), (α, pγ)

10.771(1) [175] (p, p ′), (d, d ′)

10.802(2) 10.8059(4) [183] (n, γ)

10.818(1) [175] (p, p ′), (d, d ′)

10.823(2) 10.826(1) [175] (p, p ′), (d, d ′)

10.880(2) 10.882(1) [175] (p, p ′), (d, d ′)

10.896(2) 10.893(1) [175] (p, p ′), (d, d ′)

10.915(2) 10.915(1) [175] (p, p ′), (d, d ′)

10.928(2) 10.928(1) * [175] (p, p ′), (d, d ′)

10.947(2)

{
10.943(2) [175] (d, d ′)

10.9491(8) [177] (γ, γ̄)

10.975(2) 10.978(3) * [181] (p, p ′)

10.997(1) 10.998(1) * [175] (p, p ′), (d, d ′)

11.016(1)

{
11.012(3) [175] (p, p ′), (d, d ′)

11.017(1) [175] (p, p ′), (d, d ′)

11.039(3) [176] heavy-ion fusion/γ decay

11.047(1) 11.047(1) * [175] (p, p ′), (d, d ′)

11.072(1) 11.074(1) [175] (p, p ′), (d, d ′)

11.082(1) 11.084(1) [175] (p, p ′), (d, d ′)

11.102(1) [175] (p, p ′), (d, d ′)

11.112(1) 11.11223(4) * [180] (n, γ), (n, tot)

11.119(1) [175] (p, p ′), (d, d ′)

Table 5.2 Excitation energies of states of 26Mg observed in the present work
using the (d, p) reaction, compared to those seen in previous studies,
with references and reaction mechanisms given. States used in the
energy calibration are marked with asterisks.

11+ state described in Ref. [81].
27− state described in Ref. [176] (population forbidden in the current work).
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Figure 5.4 Same as Figure 5.3 above, at higher excited states.
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Figure 5.5 Same as Figure 5.3 above, at higher excited states.

94



1540
1560

1580
1600

1620
1640

1660
1680

P
osition (ch)

0

200

400

600

800

1000
Counts

11.391

11.344

11.327

11.294

11.281

11.243

11.182

11.169

11.154

11.112

11.082

11.072

11.047

11.016

10.997

10.975

10.947

10.928

10.915

10.896

10.880

10.823

10.802

10.766

10.743

10.717

10.682

10.648

10.600

10.558

Figure 5.6 Same as Figure 5.3 above, at higher excited states.
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5.3 Angular distributions of states of 26Mg above

the alpha threshold populated using the
25Mg(d, p)26Mg reaction

This section presents some of the angular distributions of excited states measured

in the current work, fitted using weakly bound DWBA calculations performed

with fresco (previously discussed in §2.3).

The angular distributions of states presented in this section are those relevant

to known resonances in 26Mg that drive the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg

reactions in the weak s-process. Those relevant to the 22Ne + α reactions have

been measured in the recent alpha-transfer experiments of Jayastissa et al. [116]

or Ota et al. [174], but reliable values of the alpha partial widths extracted rely

on well-established spin/parities of states.

States around 10.8 MeV

Two peaks were observed at excitation energies of 10.802(2) and 10.823(2) MeV

in the current work. The peak at 10.802(2) MeV is fitted very well at the most

forward angles by an `=1 component, as shown in Figure 5.7.

At larger lab angles of emission, the smaller impact parameter in the reaction

will make multi-step processes more likely. Thus, the single-step mechanism of

the DWBA calculations is not expected to fit larger angles perfectly, but will

replicate the most forward angles well. This contrasts with the first experiment

discussed in this thesis, where some of the more forward angles required the

addition of a compound component to describe their angular distributions. In

addition, these multi-step mechanisms mean that measurements of differential

cross sections at more backward angles will not provide further clarification on

which `-transfers can populate that excited state, and thus the spin/parities that

state could possibly have.
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Figure 5.7 Differential cross section angular distribution of peak observed at
10.802 MeV.

A state was observed by the photoexcitation experiment of Longland et al. [177]

at an energy of 10.8057(7) MeV, and assigned a spin/parity of 1−, an assignment

which was also given by the (α, α′) scattering of Talwar et al. [173] to a state in

this region. The `=1 angular distribution shown in Figure 5.7 is consistent with

these 1− assignments.

The angular distribution of the state at 10.802(2) MeV can be contrasted with

that of the peak observed at 10.648(2) MeV in the current work. This state

was seen by Longland et al. [177] at 10.6473(8) MeV and assigned Jπ=1+

(the unnatural parity of this state means it cannot contribute to the 22Ne + α

reactions). As can be seen in Figure 5.8, an `=2 angular distribution fits

the differential cross section distribution best, which is in agreement with the

spin/parity assigned by Longland et al. [177].
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Figure 5.8 Differential cross section angular distribution of peak observed at
10.648 MeV.

The distinct structure seen in the angular distribution of the peak observed at

10.823(2) MeV in the current experiment, as can be seen in Figure 5.9, can only

be explained by an `=0 transfer to reach the final excited state.
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Figure 5.9 Differential cross section angular distribution of peak observed at
10.823 MeV.

This constrains the spin/parity of the state to either 2+ or 3+ and, as this state

has been seen in alpha transfer experiments [116, 174], it can only have natural

parity, giving a spin/parity assignment of 2+. While this assignment comes from

only a small number of data points, it is in agreement with the electron scattering

experiment of Lees et al. [147] and the γ-decay experiment of Lotay et al. [176].

DWBA fits to electron scattering data by Lees et al. gave an assignment of 2+ to

a state measured at 10.838(24) MeV. The experiment by Lotay et al. constrained

the spin/parity of what was assumed to be the same state (with an excitation

energy of 10.823(3) MeV) to J=(2-6).

The high resolution proton and deuteron scattering experiment from Adsley et al.

indicates that there are three excited states of 26Mg in this region, at excitation

energies of 10.806(1), 10.818(1) and 10.826(1) MeV [175]. An alpha-particle

inelastic scattering experiment from Adsley et al. [178] indicated a 0+ state

exists at 10.824(10) MeV, while a high energy (p, p ′) experiment from Ref. [184]

observed a 1+ state at around 10.82 MeV. No evidence of population of a 0+ or

1+ state around 10.8 MeV was found in the current work, which would have had

a clear `=2 transfer in the angular distribution. This is consistent with only two

states observed with a separation of ∼20 keV, which remained across all angles

measured, thus matching well to the states at 10.806 and 10.826 MeV.

The excited state at 10.826 MeV corresponds to a resonance in the 22Ne(α, γ)26Mg
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reaction rate, which contributes to the reaction rate at lower temperatures, below

∼0.2 GK. Combining the spin/parity assignment of 2+ (and thus eliminating

the possibility of a 0+ or 1− assignment) with the results of the alpha-transfer

study of Jayatissa et al. [116] gives an extracted alpha partial width of Γα =

2.1± 0.3(stat.)± 0.4(sys.)× 10−22 eV, as shown in Table 5.4.

The higher-energy measurement of the 25Mg(d, p)26Mg reaction by Chen et al.

[182] failed to resolve the individual states in this region.

State at 11.082 MeV

The angular distribution of the peak observed at 11.082(1) MeV in the current

experiment is fitted best by an `=2 transfer, as shown in Figure 5.10, only allowed

by a positive-parity state.
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Figure 5.10 Differential cross section angular distribution of peak observed at
11.082 MeV.

The proton inelastic scattering experiment of Adsley et al. [178] observed an

excited state at an energy of 11.084(1) MeV. This state had been seen previously

in the alpha-scattering experiment of Talwar et al. [173], with an assignment of

either 2+ or 3− from comparison to DWBA angular distributions. The γ decay
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study of Lotay et al. [176] observed an angular distribution that could not be

reconciled with the 3− assignment, and thus deemed it to be a 2+ state.

In the 25Mg(d, p)26Mg study of Chen et al. [182], a peak at an energy of

11.069(10) MeV (indicating several states are contributing to the peak in that

work), fitted by an `=2 transfer, suggesting a strong, positive-parity state is

present in this region.

The angular distribution observed in the current work provides confirmation

that this excited state has a positive parity, consistent with a 2+ (and not 3−)

spin/parity assignment, and thus reduces the uncertainty in the alpha partial

width of the resonance that dominates the 22Ne(α, γ)26Mg reaction rate, giving

it a value of Γα = 5.7± 0.7(stat.)+1.4
−1.2(sys.)× 10−11 eV, when combined with the

results of Jayatissa et al. [116], as shown in Table 5.4.

Peak at 11.112 MeV

In the current experiment, a peak is observed with an excitation energy of

11.112(1) MeV. This matches a state seen at 11.113(1) MeV observed through

the (p, p ′) and (d, d ′) scattering experiments of Adsley et al. [178] and a state

measured at 11.112 MeV by the neutron capture reactions of Massimi et al.

[179, 180]. These neutron capture reactions were analysed with an R-matrix

code to assign a spin/parity of 2+ to this state.

In the current work, the angular distribution is fitted well by the `=2 transfer,

consistent with a 2+ state, as shown in Figure 5.11.
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Figure 5.11 Differential cross section angular distribution of peak observed at
11.112 MeV.

This is consistent with the spin/parity of 2+ used to place an upper limit on the

extracted alpha partial width in the alpha transfer experiment of Ota et al. [174],

indicating the reliability of the limit of Γα < 2.2 × 10−10 eV for the resonance

that dominates the 22Ne(α, n)25Mg at low temperatures (∼0.2 GK) [174].

In the (d, p) study of Chen et al. [182], a peak observed at 11.112(10) MeV was

fitted with an `=3 transfer, but contains contributions from several nearby states.

Peak at 10.947 MeV

A peak was observed in the spectrum of the current experiment at 10.947(2) MeV,

consistent with production from a single state. This excitation energy matches

the state at 10.9491(8) MeV seen in the photoexcitation study of Longland et al.

[177], who assigned it a spin/parity of 1−. The angular distribution measured in

the current work is not fitted well by a pure `=1 or pure `=2 transfer, as can be

seen in the left hand side of Figure 5.12, with no improvement provided by the

addition of an `=0 transfer to the `=2 component. A combination of the `=1

and `=3 transfers fits the angular distribution best, as can be seen in Figure 5.12,

consistent with the population of a 1− state.

102



0 10 20 30 40
CoM[ ]

10 1
d

/d
 [m

b/
sr

]

L = 1
L = 2

Exp dd

0 10 20 30 40
CoM[ ]

L = 1
L = 3
L

Exp dd

Figure 5.12 Differential cross section angular distribution of peak observed at
10.947 MeV.

The inelastic scattering experiment of Adsley et al. [175] observed another state

at 10.943(2) MeV through the (d, d ′) reaction (a contaminant peak obscured the

state in the (p, p ′) spectrum). This same state was observed at an energy of

10.943(4) MeV and assigned a range of possible spin/parities (5−, 6+, 7−) by

the γ-decay study of Lotay et al. [176]. As none of these spin/parities proposed

by Lotay et al. can be populated by an `=1 transfer, the component of the

angular distribution that dominates the more forward angles in the current work

must have come exclusively from the lower-spin state, meaning the distribution

observed in the current work is consistent with the spin/parity assignment of 1−

to the 10.949 MeV state.

The alpha-transfer experiment of Jayatissa et al. [116] populated a state

with an excitation energy of 10.95(2) MeV. The sub-Coulomb beam energy

used preferentially populates low-spin states, meaning the high-spin state at

10.943 MeV is very unlikely to be contributing to the alpha-transfer yield. Using

the recommended spin/parity of 1− for the state at 10.949 MeV, an alpha

partial width of Γα = 3.0 ± 0.3(stat.)+0.75
−0.6 (sys.) × 10−14 eV was extracted, as

shown in Table 5.4. This reduces the uncertainty in this state’s contribution to

the 22Ne(α, γ)26Mg reaction rate, which is expected to be significant at lower

temperatures.
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Ex (lit) [MeV] Ex (current) [MeV] `-transfer (current) Recommended Jπ

10.8059 10.802 1 1−

10.826 10.823 0 2+

10.9491 10.947 1+3 1−

11.084 11.082 2 2+

11.112227 11.112 2 2+

Table 5.3 Excited states discussed in the previous section, with the permitted `-
transfers extracted from their angular distributions and recommended
spin/parities, based on constraints from literature and the current
work.

A summary of the key `-transfers constrained from the measured angular

distributions and their corresponding recommended spin/parities are shown in

Table 5.3. The possible alpha partial widths extracted from Ref. [116] are shown

in Table 5.4, with recommended spin/parities and widths from the constraints

found in this work presented. The method of extraction of alpha widths from

alpha transfer reactions is described in Appendix C.

Ex [MeV] [116]
Recommended

Er [keV] Jπ Γα [eV] [116]
Recommended Recommended

Ex [MeV] Jπ Γα [eV]

11.08(2) 11.084(1) a 469(1) 0+ 1.3±0.1±0.3×10−9

1− 2.5±0.3+0.7
−0.5×10−10

2+ 5.7±0.7+1.4
−1.2×10−11 2+ 5.7±0.7+1.4

−1.2×10−11

10.95(2) 10.9491(8)b 334.4(8) 0+ 1.5±0.2+0.4
−0.3×10−13

1− 3.0±0.3+0.75
−0.6 ×10−14 1− 3.0±0.3+0.75

−0.6 ×10−14

2+ 6.4±0.6+1.0
−0.6×10−15

10.83(2) 10.826(1)a 211(1) 0+ 5.3±0.7+1.1
−1.0×10−21

1− 1.0±0.1+0.3
−0.2 ×10−21

2+ 2.1±0.3±0.4×10−22 2+ 2.1±0.3±0.4×10−22

a Adsley et al. (2018) [175].
b Longland et al. (2009) [177].

Table 5.4 Table summarising possible alpha partial widths extracted from
the yield of the alpha transfer experiment of Jayatissa et al.
[116]. Recommended alpha partial widths constrained using the
recommended spin/parities of the current study are given. The
first and second uncertainties presented with the alpha partial widths
are the statistical and systematic uncertainties from Jayatissa et al.
[116]. Alpha threshold of 10.61474(3) MeV taken from Ref. [141].
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5.4 22Ne + α reaction rates for neutron

production in the weak s-process

5.4.1 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg Reaction Rate

Calculations

Reactions that proceed through relatively high excitation energies will tend to

be dominated by resonant direct capture reactions [85]. As the 22Ne(α, γ)26Mg

and 22Ne(α,n)25Mg reactions proceed through states above Sα=10614.8 keV and

Sn=11093.1 keV respectively [81], the non-resonant capture component of the

reaction rate will be considered negligible in the calculation of the reaction rates.

The contribution for each resonance was calculated using the formalisation set

out in §2.2, with the parameters used given in Table 5.5.

For low energy resonances just above the alpha threshold, as are involved in the

temperatures relevant to neutron production for the s-process, the alpha partial

width (Γα) is much smaller than that of the γ and neutron widths (Γγ,Γn). Thus,

the resonance strengths for the (α, γ) and (α,n) reactions, ωγ(α,γ) and ωγ(α, n),

can be well approximated as:

ωγ(α,γ) ≈ (2J + 1)
Γα

1 + Γn
Γγ

,

ωγ(α,n) ≈ (2J + 1)
Γα

1 + Γγ
Γn

. (5.3)

Table 5.5 shows the properties of the nuclear states used in the reaction rate

calculations of the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reaction rates and the

studies they were taken from, including alpha partial widths constrained by the

angular distributions of states shown in the previous section. For resonances

associated with excited states above 11.32 MeV, resonance strengths were taken

from Ref. [185] for the (α, γ) reaction and from Ref. [186] for the (α,n) reaction.
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Table 5.5 Energy level properties used to calculate 22Ne(α, γ)26Mg and
22Ne(α,n)25Mg reaction rates. Properties have been labelled with
their sources, with unlabelled properties constrained by the current
work (see section 5.3). Alpha threshold of 10.61474(3) MeV taken
from Ref. [141].

Ex [MeV] Er [MeV] Jπ Γn
Γγ

Γα [eV] ωγ(α,γ) [eV] ωγ(α,n) [eV]

10.826 a 0.211 2+ 0 2.1×10−22 b 1.1× 10−21 —

10.9491 c 0.3344 1− 0 3.0×10−14 b 9.0×10−13 —

11.084 a 0.469 2+ 0 5.7×10−11 b 2.9×10−10 —

11.11223 d 0.49749 2+ 1530 d <2.2×10−10 e <7.2×10−13 <1.1×10−9

11.16307 d 0.54833 2+ d 1900 d <1.3×10−11 e <4.8×10−14 <9.1×10−11

11.16924 d 0.55450 3− d 588 d <1.3×10−11 e <1.5×10−13 <9.1×10−11

11.17104 d 0.55630 2+ d 0.2 d <1.3×10−11 e <5.4×10−11 <1.1×10−11

11.3195 f 0.7048 (0+) b 4.6×10−5 f 1.2×10−4 g

a 26Mg(p, p ′)26Mg and 26Mg(d, d ′)26Mg - Adsley et al. (2018) [175].
b 22Ne(6Li, d)26Mg - Jayatissa et al. (2020) [116].
c 26Mg(γ, γ̄)26Mg - Longland et al. (2009) [177].
d 25Mg + n - Massimi et al. (2017) [180].
e 22Ne(6Li, d)26Mg - Ota et al. (2020) [174].
f 22Ne(α, γ)26Mg (direct measurement) - Hunt et al. (2019) [170].
g 22Ne(α,n)25Mg (direct measurement) - Jaeger et al. (2001) [186].

The calculated rates for the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reactions are

plotted in Figure 5.13, with the ratio of their rates shown in Figure 5.14. The

normalised contributions of each individual resonance to the total reaction rate

are shown in Figures 5.15 and 5.16 respectively.
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Figure 5.13 Calculated 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reaction rates,
using parameters from Table 5.5.
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Figure 5.14 Ratio of 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reaction rates,
calculated using parameters from Table 5.5. The upwards pointing
arrows show the temperatures at which the reaction rate ratio can
be considered to be a lower limit.
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Figure 5.15 Individual resonances of the 22Ne(α, γ)26Mg reaction, normalised
to the total reaction rate, using parameters from Table 5.5.
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Figure 5.16 Individual resonances of the 22Ne(α,n)25Mg reaction, normalised
to the total reaction rate, using parameters from Table 5.5.
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As can be seen in Figure 5.15, the 22Ne(α, γ)26Mg reaction rate is dominated

at low temperatures by the resonance associated with Ex=10.9491 MeV, at

temperatures around 0.2 GK by the resonance associated with Ex=11.084 MeV,

and by the resonance associated with Ex=11.3195 MeV at higher temperatures.

The resonance associated with 10.826 MeV contributes a small amount to the

reaction rate at low temperatures, and resonances above 11.32 MeV contribute

up to ∼10% at higher temperatures.

For the 22Ne(α,n)25Mg reaction, as shown in Figure 5.16, the resonances

associated with the excitation energies of 11.112 and 11.3195 MeV almost

completely dominate the reaction rate below and above 0.2 GK respectively,

with resonances above 11.32 MeV contributing over 10% of the reaction rate at

temperatures above ∼0.5 GK.

5.4.2 Comparisons of 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg

reaction rates to previous work

Figures 5.17 and 5.18 present the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reaction

rates calculated in the current work as ratios of the rates calculated in the Monte

Carlo study of Longland et al. (2012) [187]. These Figures also compare reaction

rates calculated using the alpha partial widths given in Table 1 of Jayatissa et

al. [116] and the ratios of neutron and gamma partial widths given in Table 3

of Ota et al. [174] to Longland et al. (2012) [187]. Due to the complexity of

the uncertainties in the parameters that contribute to the reaction rates, a truly

comprehensive representation of the uncertainties associated with the reaction

rates would require a dedicated Monte Carlo analysis of the available information,

beyond the scope of the work in this thesis. What is presented here, however,

can be considered recommended rates for the two reactions.

109



0.10 0.20 0.30 0.40 0.50
T [GK]

0.1

1.0

10.0

100.0

Ra
tio

 o
f R

ea
ct

io
n 

Ra
te

s

Figure 5.17 The 22Ne(α, γ)26Mg reaction rate calculated in the current work
(blue) and using the parameters extracted in Jayatissa et al. [116]
(red), presented as a ratio to the median reaction rate of Longland
et al. [187]. The “low rate” and “high rate” from Longland et al.
are indicated by the shaded areas.

0.10 0.20 0.30 0.40 0.50
T [GK]

0.1

1.0

10.0

100.0

Ra
tio

 o
f R

ea
ct

io
n 

Ra
te

s

Figure 5.18 The 22Ne(α,n)25Mg reaction rate calculated in the current work
(blue) and using the parameters extracted in Jayatissa et al. [116]
(red), presented as a ratio to the median reaction rate of Longland
et al. [187]. The “low rate” and “high rate” from Longland et al.
are indicated by the shaded areas. Arrows indicate the temperatures
at which the reaction rate ratio should be considered an upper limit.
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As can be seen in Figure 5.17, the rate of the 22Ne(α, γ)26Mg reaction is now

considered to be much greater at temperatures below ∼0.25 GK. This is due to

the contributions from the resonances associated with the states at 10.949 and

11.084 MeV, which dominate the reaction rate at these temperatures (as can

be seen in Figure 5.15) and have only recently had their alpha partial widths

measured. Longland et al. [187] relied on calculating a theoretical upper limit

to estimate the size of the partial width of the 10.949 MeV state, while the

reaction rate calculations presented in the current work used the (larger) alpha

width measured recently in the alpha transfer study described in Ref. [116].

In addition, the state at 11.084 MeV had not been identified at the time of

publication of Longland et al. (2012), and therefore the contributions from the

resonance associated with this state were only included in later reaction rate

calculations. Above 0.25 GK, the current reaction rate and that of Longland

et al. (2012) are similar, as the rate is dominated by the resonance associated

with the state at 11.3195 MeV, which has had concordant measurements of its

strength in direct studies [170, 185]. The lower reaction rate from Jayatissa et

al. [116] at higher temperatures can be explained by the extraction of an alpha

partial width for the state at 11.3195 MeV that is lower than that extracted in

direct studies [170, 185].

Figure 5.18 shows the current 22Ne(α,n)25Mg reaction rate normalised to that

of Longland et al. [187]. At temperatures below 0.2 GK, the reaction rate is

dominated by a resonance associated with an excited state at 11.112 MeV, as

shown in Figure 5.16, which has only had the upper limit of its alpha partial

width measured. Therefore, the reaction rate calculated at these temperatures in

the current work should be considered an upper limit, with the true reaction rate

possibly below that recommended by Longland et al.. At temperatures above

0.2 GK, the resonance associated with the state at 11.3195 MeV dominates the

reaction rate (with other resonances that have been directly measured becoming

more significant around 0.5 GK). No direct measurement of this resonance has

been published since the work of Jaeger et al. [186] that was used in Longland et

al., and so the understanding of the contribution of this resonance to the reaction

rate remains unchanged. For the resonances associated with the states at 11.163

and 11.171 MeV, Longland et al. relied on the calculation of upper limits of the

alpha partial widths, assuming the lowest possible spin out of the ranges known at

the time. This resulted in partial width upper limits of the order Γα < 10−9 eV.

However, spin/parity knowledge from the neutron capture studies of Massimi et

al. [180] and the alpha transfer study of Ota et al. [174] have allowed stricter
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constraints on the alpha partial widths of these states to be imposed, now of the

order Γα < 10−11 eV. These smaller widths have resulted in much weaker (α,n)

resonance strengths for these resonances. As can be seen in Figure 5.16, this

results in a negligible reaction rate contribution from these resonances, leading

to a reduction in the rate of the 22Ne(α,n)25Mg reaction above 0.2 GK relative

to that recommended by Longland et al. Once again, the lower reaction rate

calculated from the work of Jayatissa et al. [116] at higher temperatures can

be explained by the alpha partial width for the state at 11.3195 MeV extracted

being lower than that from direct reactions.

During the latter phases of the preparation of this thesis, Adsley et al. (2021)

[188] published a review of the current state of studies intending to constrain

the rates of the 22Ne + α reactions. In this study, a Monte Carlo calculation of

the reaction rates and upper and lower limits were performed. However, some

differences in the methods of parameter choice for the states of astrophysical

importance, specifically the alpha partial widths, are of note. For the resonances

associated with the state at 11.084 and 11.171 MeV, alpha partial widths are

taken from the alpha transfer studies of Refs. [116] and [174]. However, for

states at 10.949, 11.112, 11.163 and 11.169 MeV, calculations of Wigner limits

are used, despite all these states being observed or having experimental upper

limits placed on their alpha widths in the same alpha-transfer studies. This

exclusion of the alpha widths from the 10.949 and 11.112 MeV states results in

Adsley et al. [188] calculating an 22Ne(α, γ)26Mg rate less than that of the current

study below 0.2 GK, and an 22Ne(α,n)25Mg rate that could be higher than that

calculated in the current study at temperatures below 0.2 GK.
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Chapter 6

Summary and Discussion

The two experiments discussed in this work achieved their original goals by

successfully constraining astrophysically important nuclear reaction rates. The

first experiment constrained the 25Al(p, γ)26Si reaction rate at nova temperatures

(with the results published in a peer-reviewed paper [1]) and the second

experiment constrained the 22Ne(α,n) and 22Ne(α, γ) reaction rates for neutron

production in the weak s-process.

In the first experiment described in this thesis, the 25Mg(d, p) reaction was

measured using the Enge split-pole spectrograph at TUNL to study the states

in 26Mg that are mirror states of the resonances in the 25Al(p, γ)26Si reaction in

nova burning conditions, a key reaction for determining the yield of 26Al in novae.

Only the 3+ resonance has been experimentally constrained in 26Si previously,

and previous transfer studies of the mirror nucleus 26Mg have failed to cleanly

resolve the mirror 0+ and 1+ states [139, 140], or have produced anomalously large

spectroscopic factors for the 1+ state [143]. This work allowed the first clean and

reliable extraction of an absolute value and upper limit for the spectroscopic

factors of the 0+ and 1+ states in 26Mg respectively (along with a measurement

of the spectroscopic factor of the 3+ state).

By comparing these spectroscopic factors to shell-model calculations, proton

partial widths for the mirror states in 26Si were estimated. The extracted partial

width for the 3+ state of ∼2.6 eV agrees with a 25Al(d,n)26Si*(p) study that

measured the width directly in 26Si [157], while the 0+ partial width is consistent

with the small value predicted by shell-model calculations [86]. The strict upper

limit that has been placed on the proton partial width of the 1+ state is in

agreement with shell-model calculations, but is roughly 40 times smaller than
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the partial width implied by a previous (4He, 3He) study, suggesting that there

were multi-step contributions in the yield of the 1+ state in that study [143] and

what was extracted was not a pure spectroscopic factor.

Reaction rate calculations using these three resonances have re-affirmed the 3+

state to dominate at higher temperatures, while the first reliable experimental

constraints this work has placed on the 0+ state show that it contributes up to

∼10% of the reaction rate across all temperatures. The limit on the 1+ proton

partial width confirms that, while it dominates the rate at lower temperatures,

it never competes significantly with the β-decay of 25Al, re-affirming that the

resonance has very little effect on the amount of 26Al produced in novae.

The 0+ and 1+ states both have proton partial widths smaller than their γ partial

widths, meaning the constraints from this work have significantly reduced the

uncertainty in their resonance strengths. As the most significant resonance for

the 25Al(p, γ)26Si reaction, future efforts to constrain the rate should focus on

more accurate values of the partial widths of the 3+ state. As the method for

extracting Γγ for the state relies on knowledge of Γp, a reduction in the uncertainty

of Γp improves knowledge of both parameters. A recent re-measurement of

the 25Al(d,n)26Si*(p) reaction at FSU, presented in Ref. [189], with a much

clearer spectrum than in the previous (d,n) work, suggests that more accurate

information on this state could be available in the near future.

A negative parity state in 26Si around 5.5–6.2 MeV could contribute to the
25Al(p, γ)26Si reaction rate at nova temperatures through an `=1 resonance.

Previous indirect evidence from γ-decay [142] and (d, p) studies [139, 140] indicate

the existence of a 1− state around 5.7 MeV in 26Mg. In the current work, all

individual states could not be resolved, but the angular distribution of the peak

measured at 5.7 MeV is not in conflict with the existence of a negative parity

state at this energy. The identification of a mirror state to this in 26Si and

the measurement of its properties would greatly clarify its role in the 25Al(p, γ)

reaction rate.

As described in the second experiment of this thesis, the Enge split-pole

spectrometer measured the population of excited states of 26Mg above the alpha

threshold (Sα=10.615 MeV) using the 25Mg(d, p) reaction, to constrain properties

of those states relevant to the 22Ne(α,n) and 22Ne(α, γ) reactions. These two

reactions proceed through resonances of natural parity states in 26Mg above the

alpha threshold and their rates determine the neutron budget in the weak s-

process. Direct measurements of resonances that control these rates have only
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been possible for excitation energies at 11.3195 MeV and above, with indirect

studies constraining the lower resonances. Recent alpha transfer studies [116, 174]

have constrained these resonance strengths by extracting alpha partial widths

for the corresponding states. However, these values are strongly dependent on

knowledge of the spin/parities of these states. In the current work, the angular

distributions of states above the alpha threshold were compared to weakly-

bound DWBA calculations for different `-transfers, with the best-fitting transfers

constraining the spin/parities of these states. The astrophysically significant

states at 10.826, 10.9491, 11.084 and 11.11223 MeV were re-affirmed to have

spin/parities 2+, 1−, 2+ and 2+ respectively. These assignments were combined

with the results of alpha-transfer experiments to constrain alpha partial widths

of the resonances, which determine the resonance strengths in the 22Ne + α

reactions.

Using these constrained width values, reaction rate calculations indicated the

states in 26Mg at 10.9491, 11.084 and 11.3195 MeV dominate the 22Ne(α, γ)26Mg

rate across temperatures relevant for neutron production in the weak s-process,

while excited states at 11.112 and 11.3195 MeV control the 22Ne(α,n)25Mg

reaction rate.

As mentioned, the strength of the resonance associated with the state at

11.3195 MeV has been directly measured, constraining both reaction rates above

∼0.2 GK. However, the resonances associated with the states at 10.949 and

11.112 MeV dominate the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg reaction rates

respectively below ∼0.2 GK. As neither of these resonance strengths have been

measured directly, and the temperature range they cover is likely where the

(α,n) rate will overtake the (α, γ) rate, constraining these strengths further is

vital to determining the weak s-process neutron budget. Only an upper limit

has been placed on the alpha partial width of the 11.112 MeV state. As its

spin/parity is now certain, a high-sensitivity alpha transfer study could be able

to measure an absolute value for its alpha partial width. Direct measurements

of both resonances would significantly constrain the reaction rates. The direct

measurement of the resonance strength of the 10.949 MeV state in the (α, γ)

reaction is planned at the Laboratory for Underground Nuclear Astrophysics

(LUNA), with a previous campaign placing an upper limit on the resonance

strength consistent with previous indirect measurements [190]. Measurements

of the properties of these two states will significantly further constrain the rates

of the 22Ne + α reactions. This will provide greater certainty on the neutron

budget available for the weak s-process, giving a clear understanding of the
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nucleosynthesis of elements between A=60 and A=90 through this process.
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Appendix A

Composition of Experimental Target
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Figure A.1 Target composition certification for the material used to make the
targets in the current experiments, performed by Trace Sciences
International and cosigned by Argonne National Laboratory.
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Appendix B

Kinematics Calculations

B.1 Conversion of angles and differential cross

sections from laboratory to centre-of-mass

frame

As the outputs of DWBA calculations are in the centre-of-mass frame, the angles

and cross sections must be converted to the same frame to be compared.

For a reaction A(a, b)B, the ratio between the velocity of the centre-of-mass frame

vc and the velocity of the ejected particle in the CoM frame vb
′ is calculated as

follows [85]:

γ ≡ vc
v′b

=

√
mambEbeam

mB(mb +mB)Q+mB(mB +mb −ma)Ebeam
, (B.1)

where

Ebeam ≡ beam energy

Q ≡ Q value of the reaction

ma ≡ mass of incoming particle

mb ≡ mass of ejected particle

mA ≡ mass of target

mb ≡ mass of residual nucleus.
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The centre-of-mass (θ′) and lab angles (θ) for a reaction have the following

relationship, which was solved for θ′ to calculate centre-of-mass angles:

tan(θ) =

√
1−

(
v2c
c2

)
sin(θ′)

cos(θ′) + γ
. (B.2)

Differential cross sections for a nuclear reaction of A(a, b)B were converted from

the lab frame to the centre-of-mass frame as follows [85]:

(
dσ

dΩ

)′
θ′

=
1 + γ cos(θ′)

1 + γ2 + 2γ cos(θ′)3/2

(
dσ

dΩ

)
θ

. (B.3)
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B.2 Conversion of residual nucleus excitation

energy to ejected particle magnetic rigidity

For a known excitation energy, the magnetic rigidity of the ejected particle can

be calculated using the procedure described below.

Subscripts beam, T , p, rec and CoM refer to the incident beam, target nucleus,

outgoing proton, recoil nucleus and centre-of-mass frame respectively. Subscripts

i and f refer to properties before and after the reaction. Lab frame variables are

unprimed, while centre-of-mass (CoM) variables are primed.

The energy in the centre-of-mass frame of the beam is given by:

T ′beam = Tbeam

(
mT

mT +mbeam

)
. (B.4)

Thus, the total kinetic energy in the centre-of-mass frame after the reaction, Ttotal

is given by:

T ′total = Q+ T ′beam − Ex,rec. (B.5)

This means the ejected particle has centre-of-mass energy, Lorentz factor and

velocity are given by:

T ′p =
T ′total

1 + mp
mrec

,

γ′p =
T ′p

mp + 1
,

v′p[c] =

√
1− 1

γ′2p
. (B.6)

To calculate the centre-of-mass frame velocity, the velocity of the beam must first

be calculated:

γbeam = 1 +
Tbeam
mbeam

,

vbeam =

√
1− 1

γ2
beam

. (B.7)

Thus, the velocity of the centre-of-mass frame (relative to the lab frame) before
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and after the reaction is given by:

vi =
mbeam

mbeam +mtarg

vbeam,

vf =
mbeam +mtarg

mp +mrec

vi. (B.8)

This allows the CoM angle of the ejected particle to be calculated, which can be

combined with the results of equation B.6 to give the two components of its CoM

velocity:

tan(θ) =

√
1−

(
v2

c2

)
sin(θ′)

cos(θ′) +
vf
v′p

,

v′px = v′p cos θ′,

v′py = v′p sin θ′. (B.9)

Using Lorentzian transformations, these velocities can be converted in to the lab

frame, giving properties of the ejectile in the lab frame:

vpx =
v′px + vf

1 + v′pxvf
,

vpy =

√
1− v2

c2
v′py

1 + v
c2
v′px

,

vp =
√
v2
px + v2

py,

γp =
1√

1− v2p
c2

,

pp[MeV/c] = mp[MeV]
√
γ2
p − 1. (B.10)

Conversion of the momentum to a magnetic rigidity is then possible:

p

q
[kgms−1C−1] = Bρ[Tm],

p

q
[MeV/c/e] =

5.344× 10−16

1.609× 10−19

p

q
[kgms−1C−1],

p

q
[MeV/c/e] = 299.7925Bρ[Tm]. (B.11)

122



B.3 Calculation of mean and statistical

uncertainties of excitation energies

The weighted mean excitation energy Ex of a peak across several runs and

its associated statistical uncertainty σĒx can be calculated using the following

method:

Ex =
1∑n

i
1

∆E2
xi

n∑
i

Exi
∆E2

xi

,

σ2
Ēx

=
1∑n

i
1

∆E2
xi

1

n− 1

n∑
i

(Exi − Ex)2

∆E2
xi

. (B.12)

where

Exi ≡ excitation energy from single run

Ex ≡ mean excitation energy

σ2
Ēx
≡ standard deviation of mean excitation energy

n ≡ number of runs peak observed at

i ≡ index for run peak observed at.
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Appendix C

Alpha partial widths from alpha

transfer experiments

Direct measurements of the resonances of the 22Ne(α, γ)26Mg and 22Ne(α,n)25Mg

reactions are very challenging, especially for the lower energy resonances, due to

their low cross sections. Just above the alpha threshold, the alpha partial width

is much smaller than the other partial widths (due to the Coulomb barrier the

alpha particle experiences), meaning the resonance strength is largely dependent

on the alpha partial width. Alpha transfer experiments will only populate the

natural parity (0+, 1−, 2+...) states of 26Mg, i.e., the states the 22Ne(α, γ)26Mg

and 22Ne(α,n)25Mg reactions proceed through, and the yield from each of these

states allows an estimation of the alpha partial width of that state. In contrast

to the (d, p) reactions described in this thesis, the spin/parity of a state in the
22Ne alpha transfer experiments only has one `-transfer that can populate that

state.

In the sub-Coulomb transfer work of Jayatissa et al. [116], the cross sections

of natural parity states populated by alpha transfer were calculated and

analysed using distorted wave Born approximation (DWBA) weakly bound

state approximation calculations. By comparing experimentally measured cross

sections to theoretical cross sections, a spectroscopic factor was extracted for each

state, allowing the calculation of asymptotic normalisation coefficients (ANCs),

C2, for each state. ANC values were then used to calculate the reduced widths
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(γ2) using the following relationship:

C2 =
2µR

~2W 2
−η,`+1/2(2kR)

γ2

1 + γ2 dS
dE

, (C.1)

where

µ ≡ reduced mass of the system,

R ≡ channel radius,

W ≡ Whittaker function,

S ≡ S`(kR) ≡ shift function.

The alpha partial widths were then calculated using the reduced widths:

Γα =
2γ2P

1 + γ2 dS
dE

, (C.2)

where

P ≡ P`(kR) ≡ penetrability function.

More information on using ANCs to extract partial widths can be found in Refs.

[191] and [192].

In Jayatissa et al. [116], the alpha partial widths were calculated at several

artificial binding energies, using the DWBA weakly bound approximation. These

calculated widths were then linearly extrapolated to the true (negative) binding

energy of the state to arrive at final values for the partial widths. This method

was also performed successfully in Ref. [117].

As the choice of spin/parities impact the theoretical calculations of alpha transfer

experiments, the alpha partial widths extracted are dependent on knowledge of

the spin/parities for the states observed in alpha transfer experiments.
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